本文实例讲述了Python多进程multiprocessing用法。分享给大家供大家参考,具体如下:
mutilprocess简介
像线程一样管理进程,这个是mutilprocess的核心,他与threading很是相像,对多核CPU的利用率会比threading好的多。
简单的创建进程:
import multiprocessing def worker(num): """thread worker function""" print 'Worker:', num return if __name__ == '__main__': jobs = [] for i in range(5): p = multiprocessing.Process(target=worker, args=(i,)) jobs.append(p) p.start()
确定当前的进程,即是给进程命名,方便标识区分,跟踪
import multiprocessing import time def worker(): name = multiprocessing.current_process().name print name, 'Starting' time.sleep(2) print name, 'Exiting' def my_service(): name = multiprocessing.current_process().name print name, 'Starting' time.sleep(3) print name, 'Exiting' if __name__ == '__main__': service = multiprocessing.Process(name='my_service', target=my_service) worker_1 = multiprocessing.Process(name='worker 1', target=worker) worker_2 = multiprocessing.Process(target=worker) # default name worker_1.start() worker_2.start() service.start()
守护进程就是不阻挡主程序退出,自己干自己的 mutilprocess.setDaemon(True)就这句等待守护进程退出,要加上join,join可以传入浮点数值,等待n久就不等了
守护进程:
import multiprocessing import time import sys def daemon(): name = multiprocessing.current_process().name print 'Starting:', name time.sleep(2) print 'Exiting :', name def non_daemon(): name = multiprocessing.current_process().name print 'Starting:', name print 'Exiting :', name if __name__ == '__main__': d = multiprocessing.Process(name='daemon', target=daemon) d.daemon = True n = multiprocessing.Process(name='non-daemon', target=non_daemon) n.daemon = False d.start() n.start() d.join(1) print 'd.is_alive()', d.is_alive() n.join()
最好使用 poison pill,强制的使用terminate()注意 terminate之后要join,使其可以更新状态
终止进程:
import multiprocessing import time def slow_worker(): print 'Starting worker' time.sleep(0.1) print 'Finished worker' if __name__ == '__main__': p = multiprocessing.Process(target=slow_worker) print 'BEFORE:', p, p.is_alive() p.start() print 'DURING:', p, p.is_alive() p.terminate() print 'TERMINATED:', p, p.is_alive() p.join() print 'JOINED:', p, p.is_alive()
①. == 0 未生成任何错误
②. 0 进程有一个错误,并以该错误码退出
③. < 0 进程由一个-1 * exitcode信号结束
进程的退出状态:
import multiprocessing import sys import time def exit_error(): sys.exit(1) def exit_ok(): return def return_value(): return 1 def raises(): raise RuntimeError('There was an error!') def terminated(): time.sleep(3) if __name__ == '__main__': jobs = [] for f in [exit_error, exit_ok, return_value, raises, terminated]: print 'Starting process for', f.func_name j = multiprocessing.Process(target=f, name=f.func_name) jobs.append(j) j.start() jobs[-1].terminate() for j in jobs: j.join() print '%15s.exitcode = %s' % (j.name, j.exitcode)
方便的调试,可以用logging
日志:
import multiprocessing import logging import sys def worker(): print 'Doing some work' sys.stdout.flush() if __name__ == '__main__': multiprocessing.log_to_stderr() logger = multiprocessing.get_logger() logger.setLevel(logging.INFO) p = multiprocessing.Process(target=worker) p.start() p.join()
利用class来创建进程,定制子类
派生进程:
import multiprocessing class Worker(multiprocessing.Process): def run(self): print 'In %s' % self.name return if __name__ == '__main__': jobs = [] for i in range(5): p = Worker() jobs.append(p) p.start() for j in jobs: j.join()
python进程间传递消息:
import multiprocessing class MyFancyClass(object): def __init__(self, name): self.name = name def do_something(self): proc_name = multiprocessing.current_process().name print 'Doing something fancy in %s for %s!' % (proc_name, self.name) def worker(q): obj = q.get() obj.do_something() if __name__ == '__main__': queue = multiprocessing.Queue() p = multiprocessing.Process(target=worker, args=(queue,)) p.start() queue.put(MyFancyClass('Fancy Dan')) # Wait for the worker to finish queue.close() queue.join_thread() p.join() import multiprocessing import time class Consumer(multiprocessing.Process): def __init__(self, task_queue, result_queue): multiprocessing.Process.__init__(self) self.task_queue = task_queue self.result_queue = result_queue def run(self): proc_name = self.name while True: next_task = self.task_queue.get() if next_task is None: # Poison pill means shutdown print '%s: Exiting' % proc_name self.task_queue.task_done() break print '%s: %s' % (proc_name, next_task) answer = next_task() self.task_queue.task_done() self.result_queue.put(answer) return class Task(object): def __init__(self, a, b): self.a = a self.b = b def __call__(self): time.sleep(0.1) # pretend to take some time to do the work return '%s * %s = %s' % (self.a, self.b, self.a * self.b) def __str__(self): return '%s * %s' % (self.a, self.b) if __name__ == '__main__': # Establish communication queues tasks = multiprocessing.JoinableQueue() results = multiprocessing.Queue() # Start consumers num_consumers = multiprocessing.cpu_count() * 2 print 'Creating %d consumers' % num_consumers consumers = [ Consumer(tasks, results) for i in xrange(num_consumers) ] for w in consumers: w.start() # Enqueue jobs num_jobs = 10 for i in xrange(num_jobs): tasks.put(Task(i, i)) # Add a poison pill for each consumer for i in xrange(num_consumers): tasks.put(None) # Wait for all of the tasks to finish tasks.join() # Start printing results while num_jobs: result = results.get() print 'Result:', result num_jobs -= 1
Event提供一种简单的方法,可以在进程间传递状态信息。事件可以切换设置和未设置状态。通过使用一个可选的超时值,时间对象的用户可以等待其状态从未设置变为设置。
进程间信号传递:
import multiprocessing import time def wait_for_event(e): """Wait for the event to be set before doing anything""" print 'wait_for_event: starting' e.wait() print 'wait_for_event: e.is_set()->', e.is_set() def wait_for_event_timeout(e, t): """Wait t seconds and then timeout""" print 'wait_for_event_timeout: starting' e.wait(t) print 'wait_for_event_timeout: e.is_set()->', e.is_set() if __name__ == '__main__': e = multiprocessing.Event() w1 = multiprocessing.Process(name='block', target=wait_for_event, args=(e,)) w1.start() w2 = multiprocessing.Process(name='nonblock', target=wait_for_event_timeout, args=(e, 2)) w2.start() print 'main: waiting before calling Event.set()' time.sleep(3) e.set() print 'main: event is set'
Python多进程,一般的情况是Queue来传递。
Queue:
from multiprocessing import Process, Queue def f(q): q.put([42, None, 'hello']) if __name__ == '__main__': q = Queue() p = Process(target=f, args=(q,)) p.start() print q.get() # prints "[42, None, 'hello']" p.join()
多线程优先队列Queue:
import Queue import threading import time exitFlag = 0 class myThread (threading.Thread): def __init__(self, threadID, name, q): threading.Thread.__init__(self) self.threadID = threadID self.name = name self.q = q def run(self): print "Starting " + self.name process_data(self.name, self.q) print "Exiting " + self.name def process_data(threadName, q): while not exitFlag: queueLock.acquire() if not workQueue.empty(): data = q.get() queueLock.release() print "%s processing %s" % (threadName, data) else: queueLock.release() time.sleep(1) threadList = ["Thread-1", "Thread-2", "Thread-3"] nameList = ["One", "Two", "Three", "Four", "Five"] queueLock = threading.Lock() workQueue = Queue.Queue(10) threads = [] threadID = 1 # Create new threads for tName in threadList: thread = myThread(threadID, tName, workQueue) thread.start() threads.append(thread) threadID += 1 # Fill the queue queueLock.acquire() for word in nameList: workQueue.put(word) queueLock.release() # Wait for queue to empty while not workQueue.empty(): pass # Notify threads it's time to exit exitFlag = 1 # Wait for all threads to complete for t in threads: t.join() print "Exiting Main Thread"
多进程使用Queue通信的例子
import time from multiprocessing import Process,Queue MSG_QUEUE = Queue(5) def startA(msgQueue): while True: if msgQueue.empty() > 0: print ('queue is empty %d' % (msgQueue.qsize())) else: msg = msgQueue.get() print( 'get msg %s' % (msg,)) time.sleep(1) def startB(msgQueue): while True: msgQueue.put('hello world') print( 'put hello world queue size is %d' % (msgQueue.qsize(),)) time.sleep(3) if __name__ == '__main__': processA = Process(target=startA,args=(MSG_QUEUE,)) processB = Process(target=startB,args=(MSG_QUEUE,)) processA.start() print( 'processA start..')
主进程定义了一个Queue类型的变量,并作为Process的args参数传给子进程processA和processB,两个进程一个向队列中写数据,一个读数据。
更多关于Python相关内容感兴趣的读者可查看本站专题:《Python进程与线程操作技巧总结》、《Python Socket编程技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]