多元函数拟合。如 电视机和收音机价格多销售额的影响,此时自变量有两个。
python 解法:
import numpy as np import pandas as pd #import statsmodels.api as sm #方法一 import statsmodels.formula.api as smf #方法二 import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D df = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0) X = df[['TV', 'radio']] y = df['sales'] #est = sm.OLS(y, sm.add_constant(X)).fit() #方法一 est = smf.ols(formula='sales ~ TV + radio', data=df).fit() #方法二 y_pred = est.predict(X) df['sales_pred'] = y_pred print(df) print(est.summary()) #回归结果 print(est.params) #系数 fig = plt.figure() ax = fig.add_subplot(111, projection='3d') #ax = Axes3D(fig) ax.scatter(X['TV'], X['radio'], y, c='b', marker='o') ax.scatter(X['TV'], X['radio'], y_pred, c='r', marker='+') ax.set_xlabel('X Label') ax.set_ylabel('Y Label') ax.set_zlabel('Z Label') plt.show()
拟合的各项评估结果和参数都打印出来了,其中结果函数为:
f(sales) = β0 + β1*[TV] + β2*[radio]
f(sales) = 2.9211 + 0.0458 * [TV] + 0.188 * [radio]
图中,sales 方向上,蓝色点为原 sales 实际值,红色点为拟合函数计算出来的值。其实误差并不大,部分数据如下。
同样可拟合一元函数;
import numpy as np import pandas as pd import statsmodels.formula.api as smf import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D df = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0) X = df['TV'] y = df['sales'] est = smf.ols(formula='sales ~ TV ', data=df).fit() y_pred = est.predict(X) print(est.summary()) fig = plt.figure() ax = fig.add_subplot(111) ax.scatter(X, y, c='b') ax.plot(X, y_pred, c='r') plt.show()
Ridge Regression:(岭回归交叉验证)
岭回归(ridge regression, Tikhonov regularization)是一种专用于共线性数据分析的有偏估计回归方法,实质上是一种改良的最小二乘估计法,通过放弃最小二乘法的无偏性,以损失部分信息、降低精度为代价获得回归系数更为符合实际、更可靠的回归方法,对病态数据的拟合要强于最小二乘法。通常岭回归方程的R平方值会稍低于普通回归分析,但回归系数的显著性往往明显高于普通回归,在存在共线性问题和病态数据偏多的研究中有较大的实用价值。
import numpy as np import pandas as pd import matplotlib.pyplot as plt from sklearn import linear_model from mpl_toolkits.mplot3d import Axes3D df = pd.read_csv('http://www-bcf.usc.edu/~gareth/ISL/Advertising.csv', index_col=0) X = np.asarray(df[['TV', 'radio']]) y = np.asarray(df['sales']) clf = linear_model.RidgeCV(alphas=[i+1 for i in np.arange(200.0)]).fit(X, y) y_pred = clf.predict(X) df['sales_pred'] = y_pred print(df) print("alpha=%s, 常数=%.2f, 系数=%s" % (clf.alpha_ ,clf.intercept_,clf.coef_)) fig = plt.figure() ax = fig.add_subplot(111, projection='3d') ax.scatter(df['TV'], df['radio'], y, c='b', marker='o') ax.scatter(df['TV'], df['radio'], y_pred, c='r', marker='+') ax.set_xlabel('TV') ax.set_ylabel('radio') ax.set_zlabel('sales') plt.show()
输出结果:alpha=150.0, 常数=2.94, 系数=[ 0.04575621 0.18735312]
以上这篇Python 普通最小二乘法(OLS)进行多项式拟合的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]