DDR爱好者之家 Design By 杰米
这是一个由加油站油罐传感器测量的油罐高度数据和出油体积,根据体积和高度的倒数,用截面积来描述油罐形状,求出拟合曲线,再用标准数据,求积分来验证拟合曲线效果和误差的一个小项目。 主要的就是首先要安装Anaconda python库,然后来运用这些数学工具。
###最小二乘法试验### import numpy as np import pymysql from scipy.optimize import leastsq from scipy import integrate ###绘图,看拟合效果### import matplotlib.pyplot as plt from sympy import * path='E:\PythonProgram\oildata.txt' lieh0 =[] #初始第一列,油管高度 liev1 =[] #初始第二列,油枪记录的体积 h_median =[] # 高度相邻中位数 h_subtract =[] #相邻高度作差 v_subtract =[] #相邻体积作差 select_h_subtr =[] #筛选的高度作差 ######## select_v_subtr =[] #筛选的体积作差 VdtH=[] #筛选的V 和 t 的 倒数。 def loadData(Spath,lie0,lie1): with open(Spath,'r') as f0: for i in f0: tmp=i.split() lie0.append(float(tmp[0])) lie1.append(float(tmp[2])) print ("source lie0",len(lie0)) def connectMySQL(): db = pymysql.connect(host='10.**.**.**', user='root', passwd='***', db="zabbix", charset="utf8") # 校罐 cur = db.cursor() try: # 查询 cur.execute("SELECT * FROM station_snapshot limit 10 ") for row in cur.fetchall(): # print(row) id = row[0] snapshot_id = row[1] DateTime = row[13] attr1V = row[5] attr2H = row[6] print("id=%d ,snapshot_id=%s,DateTime=%s,attr1V =%s, attr2H=%s ", (id, snapshot_id, DateTime, attr1V, attr2H)) except: print("Error: unable to fecth data of station_stock") try: cur.execute("SELECT * FROM can_stock limit 5"); for row in cur.fetchall(): # print(row) stockid = row[0] stationid = row[1] DateTime = row[4] Volume = row[5] Height = row[8] print("stockid=%d ,stationid=%s,DateTime=%s,Volume =%f, Height=%f ", (stockid, stationid, DateTime, Volume, Height)) except: print("Error: unable to fecth data of can_snapshot") cur.close() db.close() def formatData(h_med,h_subtr,v_subtr): lh0 = lieh0[:] del lh0[0] print("lh0 size(): ",len(lh0)) lh1 =lieh0[:] del lh1[len(lh1)-1] print("lh1 size() : ",len(lh1)) lv0 =liev1[:] del lv0[0] #print (liev1) print ("Souce liev1 size() : ",len(liev1)) print ("lv1 size() :",len(lv0)) """ lv1 =liev1[:] del lv1[len(lv1)-1] print("lv1 size(): ",len(lv1)) """ h_med[:] =[(x+y)/2 for x,y in zip(lh0,lh1)] ###采样点(Xi,Yi)### print("h_med size() : ", len(h_med)) h_subtr[:] = [(y-x) for x,y in zip(lh0,lh1)] print("h_subtr size() : ", len(h_subtr)) # v_subtr[:] = [(y-x) for x,y in zip(lv0,lv1)] v_subtr[:] = lv0 print("v_subtr size() : ", len(v_subtr)) def removeBadPoint(h_med,h_sub,v_sub): for val in h_sub: position=h_sub.index(val) if 0.01 > val > -0.01: del h_sub[position] del h_med[position] del v_sub[position] v_dt_h_ay = [(y/x) for x, y in zip(h_sub, v_sub)] return v_dt_h_ay def selectRightPoint(h_med,h_subtr,v_dt_h_ay): for val in v_dt_h_ay: pos = v_dt_h_ay.index(val) if val > 20 : del v_dt_h_ay[pos] del h_med[pos] del h_subtr[pos] for val in v_dt_h_ay: ptr = v_dt_h_ay.index(val) if val < 14: del v_dt_h_ay[ptr] del h_med[ptr] del h_subtr[ptr] def writeFile(h_mp, v_dt_h): s='\n'.join(str(num)[1:-1] for num in h_mp) v='\n'.join(str(vdt)[1:-1] for vdt in v_dt_h) open(r'h_2.txt','w').write(s) open(r'v_dt_h.txt','w').write(v) print("write h_median: ",len(h_mp)) # print("V_dt also is (y-x) : ",v_dt_h,end="\n") print("Write V_dt_h : ",len(v_dt_h)) # file=open('data.txt','w') # file.write(str(h_mp)); # file.close def integralCalculate(coeff,xspace): vCalcute =[] x = Symbol('x') a, b, c, d = coeff[0] y = a * x ** 3 + b * x ** 2 + c * x + d i=0 while (i< len(xspace)-1) : m = integrate(y, (x, xspace[i], xspace[i+1])) vCalcute.append(abs(m)) i=i+1 print("求导结果:",vCalcute) print("求导长度 len(VCalcute): ",len(vCalcute)) return vCalcute ###需要拟合的函数func及误差error### def func(p,x): a,b,c,d=p return a*x**3+b*x**2+c*x+d #指明待拟合的函数的形状,设定的拟合函数。 def error(p,x,y): return func(p,x)-y #x、y都是列表,故返回值也是个列表 def leastSquareFitting(h_mp,v_dt_hl): p0=[1,2,6,10] #a,b,c 的假设初始值,随着迭代会越来越小 #print(error(p0,h_mp,v_dt_h,"cishu")) #目标是让error 不断减小 #s="Test the number of iteration" #试验最小二乘法函数leastsq得调用几次error函数才能找到使得均方误差之和最小的a~c Para=leastsq(error,p0,args=(h_mp,v_dt_hl)) #把error函数中除了p以外的参数打包到args中 a,b,c,d=Para[0] #leastsq 返回的第一个值是a,b,c 的求解结果,leastsq返回类型相当于c++ 中的tuple print(" a=",a," b=",b," c=",c," d=",d) plt.figure(figsize=(8,6)) plt.scatter(h_mp,v_dt_hl,color="red",label="Sample Point",linewidth=3) #画样本点 x=np.linspace(200,2200,1000) y=a*x**3+b*x**2+c*x+d integralCalculate(Para,h_subtract) plt.plot(x,y,color="orange",label="Fitting Curve",linewidth=2) #画拟合曲线 # plt.plot(h_mp, v_dt_hl,color="blue", label='Origin Line',linewidth=1) #画连接线 plt.legend() plt.show() def freeParameterFitting(h_mp,v_dt_hl): z1 = np.polyfit(h_mp, v_dt_hl, 6) # 第一个拟合,自由度为6 # 生成多项式对象 p1 = np.poly1d(z1) print("Z1:") print(z1) print("P1:") print(p1) print("\n") x = np.linspace(400, 1700, 1000) plt.plot(h_mp, v_dt_hl, color="blue", label='Origin Line', linewidth=1) # 画连接线 plt.plot(x, p1(x), 'gv--', color="black", label='Poly Fitting Line(deg=6)', linewidth=1) plt.legend() plt.show() def main(): loadData(path, lieh0, liev1) connectMySQL() # 读取oildata数据库 formatData(h_median, h_subtract, v_subtract) # 去除被除数为0对应的点,并得到v 和 h 求导 值的列表 VdtH[:] = removeBadPoint(h_median, h_subtract, v_subtract) print("h_median1:", len(h_median)) print("VdtH1 : ", len(VdtH)) # 赛选数据,去除异常点 selectRightPoint(h_median, h_subtract, VdtH) print("h_median2:", len(h_median)) print("h_subtract: ", len(h_subtract)) print("VdtH2 : ", len(VdtH)) h_mp = np.array(h_median) v_dt_h = np.array(VdtH) writeFile(h_mp, v_dt_h) # 最小二乘法作图 leastSquareFitting(h_mp, v_dt_h) # 多项式自由参数法作图 freeParameterFitting(h_mp, v_dt_h) if __name__ == '__main__': main()
以上这篇Python 做曲线拟合和求积分的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]