DDR爱好者之家 Design By 杰米

in-place operation在pytorch中是指改变一个tensor的值的时候,不经过复制操作,而是直接在原来的内存上改变它的值。可以把它成为原地操作符。

在pytorch中经常加后缀“_”来代表原地in-place operation,比如说.add_() 或者.scatter()。python里面的+=,*=也是in-place operation。

下面是正常的加操作,执行结束加操作之后x的值没有发生变化:

import torch
x=torch.rand(2) #tensor([0.8284, 0.5539])
print(x)
y=torch.rand(2)
print(x+y)   #tensor([1.0250, 0.7891])
print(x)    #tensor([0.8284, 0.5539])

下面是原地操作,执行之后改变了原来变量的值:

import torch
x=torch.rand(2) #tensor([0.8284, 0.5539])
print(x)
y=torch.rand(2)
x.add_(y)
print(x)    #tensor([1.1610, 1.3789])

在官方问文档中由这一段话:

如果你使用了in-place operation而没有报错的话,那么你可以确定你的梯度计算是正确的。

补充知识:PyTorch中nn.ReLU(inplace=True)中inplace的作用

我们用PyTorch搭建神经网络时,会遇到nn.ReLU(inplace=True),inplace=True是什么意思呢?

nn.Conv2d(64,192,kernel_size=3,stride=1,padding=1),
nn.ReLu(inpalce=True),# inplace为True,默认为False

意思是:是否将计算得到的值直接覆盖之前的值

例如:x = x+1

即对原值x进行+1操作后得到的值,直接赋值给x

而不是如下找一个中间变量y:

y=x+1
x=y

先将x进行+1操作后赋值给中间变量y,然后将y值赋给x

这样就需要内存存储变量y

因此当inplace=True时:

就是对从上层网络nn.Conv2d中传递下来的tensor直接进行修改,这样能够节省运算内存,不用多存储其他变量。

以上这篇浅谈PyTorch中in-place operation的含义就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。