DDR爱好者之家 Design By 杰米

max找出tensor 的行或者列最大的值:

找出每行的最大值:

import torch
outputs=torch.FloatTensor([[1],[2],[3]])
print(torch.max(outputs.data,1))

输出:

(tensor([ 1., 2., 3.]), tensor([ 0, 0, 0]))

找出每列的最大值:

import torch
outputs=torch.FloatTensor([[1],[2],[3]])
print(torch.max(outputs.data,0))

输出结果:

(tensor([ 3.]), tensor([ 2]))

Tensor比较eq相等:

import torch

outputs=torch.FloatTensor([[1],[2],[3]])
targets=torch.FloatTensor([[0],[2],[3]])
print(targets.eq(outputs.data))

输出结果:

tensor([[ 0],
[ 1],
[ 1]], dtype=torch.uint8)

使用sum() 统计相等的个数:

import torch

outputs=torch.FloatTensor([[1],[2],[3]])
targets=torch.FloatTensor([[0],[2],[3]])
print(targets.eq(outputs.data).cpu().sum())

输出结果:

tensor(2)

补充知识:PyTorch - torch.eq、torch.ne、torch.gt、torch.lt、torch.ge、torch.le

flyfish

torch.eq、torch.ne、torch.gt、torch.lt、torch.ge、torch.le

以上全是简写

参数是input, other, out=None

逐元素比较input和other

返回是torch.BoolTensor

pytorch 常用函数 max ,eq说明

import torch

a=torch.tensor([[1, 2], [3, 4]])
b=torch.tensor([[1, 2], [4, 3]])

print(torch.eq(a,b))#equals
# tensor([[ True, True],
#     [False, False]])

print(torch.ne(a,b))#not equal to
# tensor([[False, False],
#     [ True, True]])

print(torch.gt(a,b))#greater than
# tensor([[False, False],
#     [False, True]])

print(torch.lt(a,b))#less than
# tensor([[False, False],
#     [ True, False]])

print(torch.ge(a,b))#greater than or equal to
# tensor([[ True, True],
#     [False, True]])

print(torch.le(a,b))#less than or equal to
# tensor([[ True, True],
#     [ True, False]])

以上这篇pytorch 常用函数 max ,eq说明就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

P70系列延期,华为新旗舰将在下月发布

3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。

而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?

根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。