逻辑回归
适用类型:解决二分类问题
逻辑回归的出现:线性回归可以预测连续值,但是不能解决分类问题,我们需要根据预测的结果判定其属于正类还是负类。所以逻辑回归就是将线性回归的结果,通过Sigmoid函数映射到(0,1)之间
线性回归的决策函数:数据与θ的乘法,数据的矩阵格式(样本数×列数),θ的矩阵格式(列数×1)
将其通过Sigmoid函数,获得逻辑回归的决策函数
使用Sigmoid函数的原因:
可以对(-∞, +∞)的结果,映射到(0, 1)之间作为概率
可以将1/2作为决策边界
数学特性好,求导容易
逻辑回归的损失函数
线性回归的损失函数维平方损失函数,如果将其用于逻辑回归的损失函数,则其数学特性不好,有很多局部极小值,难以用梯度下降法求解最优
这里使用对数损失函数
解释:如果一个样本为正样本,那么我们希望将其预测为正样本的概率p越大越好,也就是决策函数的值越大越好,则logp越大越好,逻辑回归的决策函数值就是样本为正的概率;如果一个样本为负样本,那么我们希望将其预测为负样本的概率越大越好,也就是(1-p)越大越好,即log(1-p)越大越好
为什么使用对数函数:样本集中有很多样本,要求其概率连乘,概率为0-1之间的数,连乘越来越小,利用log变换将其变为连加,不会溢出,不会超出计算精度
损失函数:: y(1->m)表示Sigmoid值(样本数×1),hθx(1->m)表示决策函数值(样本数×1),所以中括号的值(1×1)
二分类逻辑回归直线编码实现
import numpy as np from matplotlib import pyplot as plt "font.sans-serif"] = ["SimHei"] # 包含数据和标签的数据集 self.data = np.loadtxt("./data2.txt", delimiter=",") self.data_mat = self.data[:, 0:2] self.label_mat = self.data[:, 2] self.thetas = np.zeros((self.data_mat.shape[1])) """ 损失函数具体实现 :param theta: 逻辑回归系数 :param data_mat: 带有截距项的数据集 :param label_mat: 标签数据集 :param reg: :return: """ m = self.label_mat.size label_mat = self.label_mat.reshape(-1, 1) h = self.sigmoid(self.p_data_mat.dot(theta)) """ 逻辑回归梯度下降收敛函数 :param alpha: 学习率 :param reg: :param iterations: 最大迭代次数 :return: 逻辑回归系数组 """ m, n = self.p_data_mat.shape theta = np.zeros((n, 1)) theta_set = [] "negative", pos_text="positive", thetas=None): neg = self.label_mat == 0 pos = self.label_mat == 1 fig1 = plt.figure(figsize=(12, 8)) ax1 = fig1.add_subplot(111) ax1.scatter(self.p_data_mat[neg][:, 1], self.p_data_mat[neg][:, 2], marker="o", s=100, label=neg_text) ax1.scatter(self.p_data_mat[pos][:, 1], self.p_data_mat[pos][:, 2], marker="+", s=100, label=pos_text) ax1.set_xlabel(x_label, fontsize=14) "线性不可分数据集") "$\\lambda$ = {}".format(0)) "$\\lambda$ = {}".format(0))
二分类问题逻辑回归曲线编码实现
import numpy as np from matplotlib import pyplot as plt "font.sans-serif"] = ["SimHei"] # 包含数据和标签的数据集 self.data = np.loadtxt("./data2.txt", delimiter=",") self.data_mat = self.data[:, 0:2] self.label_mat = self.data[:, 2] self.thetas = np.zeros((self.data_mat.shape[1])) """ 损失函数具体实现 :param theta: 逻辑回归系数 :param data_mat: 带有截距项的数据集 :param label_mat: 标签数据集 :param reg: :return: """ m = self.label_mat.size label_mat = self.label_mat.reshape(-1, 1) h = self.sigmoid(self.p_data_mat.dot(theta)) """ 逻辑回归梯度下降收敛函数 :param alpha: 学习率 :param reg: :param iterations: 最大迭代次数 :return: 逻辑回归系数组 """ m, n = self.p_data_mat.shape theta = np.zeros((n, 1)) theta_set = [] "negative", pos_text="positive", thetas=None): neg = self.label_mat == 0 pos = self.label_mat == 1 fig1 = plt.figure(figsize=(12, 8)) ax1 = fig1.add_subplot(111) ax1.scatter(self.p_data_mat[neg][:, 1], self.p_data_mat[neg][:, 2], marker="o", s=100, label=neg_text) ax1.scatter(self.p_data_mat[pos][:, 1], self.p_data_mat[pos][:, 2], marker="+", s=100, label=pos_text) ax1.set_xlabel(x_label, fontsize=14) "线性不可分数据集") "$\\lambda$ = {}".format(0)) "$\\lambda$ = {}".format(0))
以上就是python 实现逻辑回归的详细内容,更多关于python 实现逻辑回归的资料请关注其它相关文章!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]