DDR爱好者之家 Design By 杰米

机器学习(Machine Learning)在最近几年绝对称的上是大火,越来越多的公司和资本投入了巨大资源和金钱到这个新上位的技术“新宠”中,尤其是随着更多的各种机器学习相关类库的出现和发展,更多新的技术已经被应用到了机器学习中, 现在大家可以看到, Python不再是唯一个老牌机器学习的必用语言, 对于现代神经网络(neural networks)语言不再是一个问题, 你基本可以使用任何的编程语言, 包括今天我们介绍的标准前端开发语言 - Javascript

Web的整个体系已经在近几年中有了长足的发展, 虽然 Javascript 和 node.js的使用案例还远远无法和Java/Python来媲美。 但是 也足够应用到很多机器学习的环境中去啦。而且最大的优势在于 - 一个浏览器就可以帮你搞定了一切 !

虽然, 基于Javascript的机器学习类库还非常的早期,很多依旧在开发状态下, 但是他们的确已经可以提供比较早期的体验。 在今天这篇文章中, 我们将选择几款超酷的机器学习和AI相关的web应用, 让大家初体验一下 ~~

Brain

brain是一个允许你快速简单创建神经网络并且基于输入/输出进行训练的类库。虽然一个CDN浏览器版本可以直接将类库加载到web页面中, 因为这个训练过程占用了大量的资源, 所以将这个类库运行在了一格Node.js环境下 。 这个类库包含了一个非常迷你的在线演示, 可以用来训练识别颜色的对比度

聊聊那些使用前端Javascript实现的机器学习类库

Deep playground

这个教育化的web应用允许你把玩神经网络,并且探索不同的组件。 拥有非常设计良好的UI, 可以允许你控制输入数据,神经元数量, 使用的算法等, 各种相关的度量将会影响最终的结果。 当然这里在后台中有大量值得学习的东西, 代码是开源的, 使用了自定义的 机器学习语言 (typescript), 并且拥有非常好的文档

聊聊那些使用前端Javascript实现的机器学习类库

FlappyLearning

这是一个使用800行代码实现的机器学习Javasript类库, 实现了一个机器学习 flappy bird 游戏的demo。 在这个类库中使用了AI技巧:Neuroevolution ,应用了来自“自然”杂志的神经系统算法, 动态的从每一个迭代的成功和失败中学习。 demo运行非常简单, 直接使用浏览器打开index.html即可

聊聊那些使用前端Javascript实现的机器学习类库

截图中可以看到经过了20代的学习, 这只鸟, 在我截屏的时候,依然还没有挂掉 !

Synaptic

可能是最活跃维护的项目之一, Synaptic是一个node.js和浏览器类库, 这个类库被设计为架构不可知的状态, 允许了开发人员创建任何类型的神经网络。 拥有很少的内建架构, 是的能够快速的测试和算法比较。 同时包含了一个非常完整的神经网络说明, 一些实际的演示, 很多其它相关的教程,来介绍机器学习如何工作滴

聊聊那些使用前端Javascript实现的机器学习类库

Land Lines

land lines是一个非常有趣的Chrome Web实验, 它查找地球的卫星图片,找出类似用户的涂鸦。 这个app没有服务器调用, 完全在浏览器里运行, 使用了webGL和机器学习, 在移动端也有很好的体验。

聊聊那些使用前端Javascript实现的机器学习类库

ConvNetJS

虽然已经不再活跃的维护了, ConvNetJS是Javascript机器学习的最先进的类库。 最早是斯坦福大学开发, 后来在Github上非常知名, 拥有了很多社区开发的特性和教程。 直接在浏览器里运行, 支持多学习技巧, 偏底层, 是的它非常适合神经网络中比较大的体验

聊聊那些使用前端Javascript实现的机器学习类库

Thing Translator

这是一个web实验演示, 允许你使用手机来识别现实生活中的物品,并且用不同语言来命名。 这个app使用web技术和两个来自Google的机器学习API实现,包括:

Cloud Vision (图片识别) 和 Translate API(语言翻译)

聊聊那些使用前端Javascript实现的机器学习类库

Neurojs

基于“增强学习“的AI系统框架。 很可惜这个项目没有正确的文档说明, 但是有一个自动驾驶的演示,拥有很多相关细节的文字描述。 这个类库纯Javascript,可以使用webpack或者babel来编译打包

聊聊那些使用前端Javascript实现的机器学习类库

Machine_learning

另外一个允许我们设置/训练神经网络的Javascript类库。 使用node.js和客户端安装非常简单, 拥有非常干净的API, 对于不同技术水平的开发人员来说,都非常适应。这个类库包含了大量的演示, 包含了很多流行的算法, 帮助你理解核心的及其学习语言原则

聊聊那些使用前端Javascript实现的机器学习类库

DeepForge

这是一个用户友好的深度学习开发环境, 允许你使用一格简单图形界面设计神经网络, 支持远程机器的训练模型, 内建版本控制, 这个项目基于Node.js和MongoDB,运行在浏览器里, 安装过程非常类似大多数的web开发过程

聊聊那些使用前端Javascript实现的机器学习类库

文章总结

虽然Javascript相关机器学习环境并没有被完整的开发, 我们推荐使用本文中列出的这些开源项目作为你的第一个机器学习资料,并且帮助你了解核心的技术。 希望对大家能够开展机器学习相关功能提供一个有效可借鉴的内容来源,感谢大家关注和阅读~也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。