最近弄了一个用户发表评论的功能,用户上传了评论,再文章下可以看到自己的评论,但作为社会主义接班人,践行社会主义核心价值观,所以给评论敏感词过滤的功能不可少,在网上找了资料,发现已经有非常成熟的解决方案。 常用的方案用这么两种
1.全文搜索,逐个匹配。这种听起来就不够高大上,在数据量大的情况下,会有效率问题,文末有比较
2.DFA算法-确定有限状态自动机 附上百科链接确定有限状态自动机
DFA算法介绍
DFA是一种计算模型,数据源是一个有限个集合,通过当前状态和事件来确定下一个状态,即 状态+事件=下一状态,由此逐步构建一个有向图,其中的节点就是状态,所以在DFA算法中只有查找和判断,没有复杂的计算,从而提高算法效率
参考文章 Java实现敏感词过滤
实现逻辑
构造数据结构
将敏感词转换成树结构,举例敏感词有着这么几个 ['日本鬼子','日本人','日本男人'] ,那么数据结构如下(图片引用参考文章)
每个文字是一个节点,连续的节点组成一个词, 日本人 对应的就是中间的那条链,我们可以使用对象或者map来构建树,这里的栗子采用 map 构建节点,每个节点中有个状态标识,用来表示当前节点是不是最后一个,每条链路必须要有个终点节点,先来看下构建节点的流程图
判断逻辑
先从文本的第一个字开始检查,比如 你我是日本鬼子 ,第一个字 你 ,在树的第一层找不到这个节点,那么继续找第二个字,到了 日 的时候,第一层节点找到了,那么接着下一层节点中查找 本 ,同时判断这个节点是不是结尾节点,若是结尾节点,则匹配成功了,反之继续匹配
代码实现
####构造数据结构
/** * @description * 构造敏感词map * @private * @returns */ private makeSensitiveMap(sensitiveWordList) { // 构造根节点 const result = new Map(); for (const word of sensitiveWordList) { let map = result; for (let i = 0; i < word.length; i++) { // 依次获取字 const char = word.charAt(i); // 判断是否存在 if (map.get(char)) { // 获取下一层节点 map = map.get(char); } else { // 将当前节点设置为非结尾节点 if (map.get('laster') === true) { map.set('laster', false); } const item = new Map(); // 新增节点默认为结尾节点 item.set('laster', true); map.set(char, item); map = map.get(char); } } } return result; }
最终map结构如下
查找敏感词
/** * @description * 检查敏感词是否存在 * @private * @param {any} txt * @param {any} index * @returns */ private checkSensitiveWord(sensitiveMap, txt, index) { let currentMap = sensitiveMap; let flag = false; let wordNum = 0;//记录过滤 let sensitiveWord = ''; //记录过滤出来的敏感词 for (let i = index; i < txt.length; i++) { const word = txt.charAt(i); currentMap = currentMap.get(word); if (currentMap) { wordNum++; sensitiveWord += word; if (currentMap.get('laster') === true) { // 表示已到词的结尾 flag = true; break; } } else { break; } } // 两字成词 if (wordNum < 2) { flag = false; } return { flag, sensitiveWord }; } /** * @description * 判断文本中是否存在敏感词 * @param {any} txt * @returns */ public filterSensitiveWord(txt, sensitiveMap) { let matchResult = { flag: false, sensitiveWord: '' }; // 过滤掉除了中文、英文、数字之外的 const txtTrim = txt.replace(/[^\u4e00-\u9fa5\u0030-\u0039\u0061-\u007a\u0041-\u005a]+/g, ''); for (let i = 0; i < txtTrim.length; i++) { matchResult = checkSensitiveWord(sensitiveMap, txtTrim, i); if (matchResult.flag) { console.log(`sensitiveWord:${matchResult.sensitiveWord}`); break; } } return matchResult; }
效率
为了看出DFA的效率,我做了个简单的小测试,测试的文本长度为5095个汉字,敏感词词库中有2000个敏感词,比较的算法分别为 DFA算法 和 String原生对象提供的 indexOf API做比较
// 简单的字符串匹配-indexOf ensitiveWords.forEach((word) => { if (ss.indexOf(word) !== -1) { console.log(word) } })
分别将两个算法执行100次,得到如下结果
可直观看出, DFA 的平均耗时是在1ms左右,最大为5ms; indexOf 方式的平均耗时在9ms左右,最大为14ms,所以DFA效率上还是非常明显有优势的。
总结
以上所述是小编给大家介绍的js实现敏感词过滤算法及实现逻辑,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]