通常情况下,微信小程序追求的是短小精悍,即开即用,用完即走,适用于一些简单的应用场景。然而,随着微信小程序开放能力的提高,人们发现用微信小程序可以实现越来越多的功能,小程序也越来越复杂,越来越庞大起来。这个可以从小程序的大小限制的变化看出,最开始小程序的大小限制为1M,后来限制为2M,最新微信又给小程序提供了分包加载机制,开发者将小程序划分成不同的子包,用户在使用时按需进行加载,所有分包大小限制提高到8M。
虽然小程序的大小限制已经大大提升,但对于小程序开发者而言,仍然捉襟见肘。随便几个图片资源、js库就可能导致小程序超重,尤其对于人工智能小程序而言,更是如此。现在的深度学习模型,动辄几十M,多则一两百M。这个时候开发人员就需要进行取舍,选择那些模型规模小,但精度不那么高的模型。比如图片分类,我们就不要选择Inception V3或ResNet之类的超大规模模型,而是选择针对移动设备优化的MobileNet,也能取得不错的效果。
不过即使是MobileNet,其模型大小也有好几M,对于精简小程序大小仍是一个很大的负担。一种解决方案是从网络加载模型,不增加小程序的体积,但这并不是一个完美的解决方案,毕竟每次推导都需要从网络下载模型,会有一定的网络延迟。在前端开发中,为了保持系统的流畅,通常会采用一些缓存技巧来避免每次从网络加载图片、JS等文件。那能否将模型也作为资源缓存起来呢?
Google团队显然也意识到了这种需求,先是在TensorFlow.js中增加了对tfjs模型缓存的支持。最近,TensorFlow.js 微信小程序插件也得到了更新,支持微信小程序模型缓存。
模型缓存利用了微信小程序的storage接口,需要注意微信小程序对storage的限制:同一个微信用户,同一个小程序 storage 上限为 10MB。storage 以用户维度隔离,同一台设备上,A 用户无法读取到 B 用户的数据;不同小程序之间也无法互相读写数据。所以我们只能选用小于10M的模型。
启用模型缓存也非常简单,步骤如下:
修改app.json文件,将tfjsPlugin的版本修改为0.0.8.
"plugins": { "tfjsPlugin": { "version": "0.0.8", "provider": "wx6afed118d9e81df9" } }
在app.js中提供localStorageHandler函数.
var fetchWechat = require('fetch-wechat'); var tf = require('@tensorflow/tfjs-core'); var plugin = requirePlugin('tfjsPlugin'); //app.js App({ // expose localStorage handler globalData: {localStorageIO: plugin.localStorageIO}, ... });
在模型加载时加入localStorageHandler逻辑。
const LOCAL_STORAGE_KEY = 'mobilenet_model'; export class MobileNet { private model: tfc.GraphModel; constructor() { } async load() { const localStorageHandler = getApp().globalData.localStorageIO(LOCAL_STORAGE_KEY); try { this.model = await tfc.loadGraphModel(localStorageHandler); } catch (e) { this.model = await tfc.loadGraphModel(MODEL_URL); this.model.save(localStorageHandler); } }
和浏览器缓存机制有点不同的是,只有在代码包被清理的时候本地缓存才会被清理。如果需要处理缓存,可以通过 wx.setStorage/wx.setStorageSync、wx.getStorage/wx.getStorageSync、wx.clearStorage/wx.clearStorageSync,wx.removeStorage/wx.removeStorageSync 对本地缓存进行读写和清理。
另外需要注意的是,当前tfjs模型托管在tfhub上,需要翻墙访问。项目中的说明文件也提及了这个问题,给出了解决方案,但那是针对以前托管在谷歌云上的模型,建立了中国国内用户可以访问到的镜像。耐心等待吧,相信Google的开发人员会解决tfhub的镜像问题的。
以上就是TensorFlow.js 微信小程序插件开始支持模型缓存的方法的详细内容,更多关于TensorFlow小程序支持模型缓存请关注其它相关文章!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]