DDR爱好者之家 Design By 杰米
不知道有没有人碰到过这样恶心的问题:两张表连接查询并limit,SQL效率很高,但是加上order by以后,语句的执行时间变的巨长,效率巨低。
情况是这么一个情况:现在有两张表,team表和people表,每个people属于一个team,people中有个字段team_id。
下面给出建表语句:
复制代码 代码如下:
create table t_team
(
id int primary key,
tname varchar(100)
);
create table t_people
(
id int primary key,
pname varchar(100),
team_id int,
foreign key (team_id) references t_team(id)
);
下面我要连接两张表查询出前10个people,按tname排序。
于是,一个SQL语句诞生了:select * from t_people p left join t_team t on p.team_id=t.id order by p.pname limit 10; [语句①]
这个是我第一反应写的SQL,通俗易懂,也是大多数人的第一反应。然后来测试一下这个语句的执行时间。首先要准备数据。我用存储过程在t_team表中生成1000条数据,在t_people表中生成100000条数据。(存储过程在本文最后)
执行上面那条SQL语句,执行了好几次,耗时在3秒左右。
再换两个语句对比一下:
1.把order by子句去掉:select * from t_people p left join t_team t on p.team_id=t.id limit10; [语句②]
耗时0.00秒,忽略不计。
2.还是使用order by,但是把连接t_team表去掉:select * from t_people p order by p.pname limit 10; [语句③]
耗时0.15秒左右。
对比发现[语句①]的效率巨低。
为什么效率这么低呢。[语句②]和[语句③]执行都很快,[语句①]不过是二者的结合。如果先执行[语句③]得到排序好的10条people结果后,再连接查询出各个people的team,效率不会这么低。那么只有一个解释:MySQL先执行连接查询,再进行排序。
解决方法:如果想提高效率,就要修改SQL语句,让MySQL先排序取前10条再连接查询。
SQL语句:
select * from (select * from t_people p order by p.pname limit 10) p left join t_team t on p.team_id=t.id limit 10; [语句④]
[语句④]和[语句①]功能一样,虽然有子查询,虽然看起来很别扭,但是效率提高了很多,它的执行时间只要0.16秒左右,比之前的[语句①] (耗时3秒) 提高了20倍。
这两个表的结构很简单,如果遇到复杂的表结构…我在实际开发中就碰到了这样的问题,使用[语句①]的方式耗时80多秒,但使用[语句④]只需1秒以内。
最后给出造数据的存储过程:
复制代码 代码如下:
CREATE PROCEDURE createdata()
BEGIN
DECLARE i INT;
START TRANSACTION;
SET i=0;
WHILE i<1000 DO
INSERT INTO t_team VALUES(i+1,CONCAT('team',i+1));
SET i=i+1;
END WHILE;
SET i=0;
WHILE i<100000 DO
INSERT INTO t_people VALUES(i+1,CONCAT('people',i+1),i%1000+1);
SET i=i+1;
END WHILE;
COMMIT;
END
情况是这么一个情况:现在有两张表,team表和people表,每个people属于一个team,people中有个字段team_id。
下面给出建表语句:
复制代码 代码如下:
create table t_team
(
id int primary key,
tname varchar(100)
);
create table t_people
(
id int primary key,
pname varchar(100),
team_id int,
foreign key (team_id) references t_team(id)
);
下面我要连接两张表查询出前10个people,按tname排序。
于是,一个SQL语句诞生了:select * from t_people p left join t_team t on p.team_id=t.id order by p.pname limit 10; [语句①]
这个是我第一反应写的SQL,通俗易懂,也是大多数人的第一反应。然后来测试一下这个语句的执行时间。首先要准备数据。我用存储过程在t_team表中生成1000条数据,在t_people表中生成100000条数据。(存储过程在本文最后)
执行上面那条SQL语句,执行了好几次,耗时在3秒左右。
再换两个语句对比一下:
1.把order by子句去掉:select * from t_people p left join t_team t on p.team_id=t.id limit10; [语句②]
耗时0.00秒,忽略不计。
2.还是使用order by,但是把连接t_team表去掉:select * from t_people p order by p.pname limit 10; [语句③]
耗时0.15秒左右。
对比发现[语句①]的效率巨低。
为什么效率这么低呢。[语句②]和[语句③]执行都很快,[语句①]不过是二者的结合。如果先执行[语句③]得到排序好的10条people结果后,再连接查询出各个people的team,效率不会这么低。那么只有一个解释:MySQL先执行连接查询,再进行排序。
解决方法:如果想提高效率,就要修改SQL语句,让MySQL先排序取前10条再连接查询。
SQL语句:
select * from (select * from t_people p order by p.pname limit 10) p left join t_team t on p.team_id=t.id limit 10; [语句④]
[语句④]和[语句①]功能一样,虽然有子查询,虽然看起来很别扭,但是效率提高了很多,它的执行时间只要0.16秒左右,比之前的[语句①] (耗时3秒) 提高了20倍。
这两个表的结构很简单,如果遇到复杂的表结构…我在实际开发中就碰到了这样的问题,使用[语句①]的方式耗时80多秒,但使用[语句④]只需1秒以内。
最后给出造数据的存储过程:
复制代码 代码如下:
CREATE PROCEDURE createdata()
BEGIN
DECLARE i INT;
START TRANSACTION;
SET i=0;
WHILE i<1000 DO
INSERT INTO t_team VALUES(i+1,CONCAT('team',i+1));
SET i=i+1;
END WHILE;
SET i=0;
WHILE i<100000 DO
INSERT INTO t_people VALUES(i+1,CONCAT('people',i+1),i%1000+1);
SET i=i+1;
END WHILE;
COMMIT;
END
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]