DDR爱好者之家 Design By 杰米
首先在这里我就不说关系型数据库与非关系型数据库之间的区别了(百度上有很多)直接切入主题
我想查询的内容是这样的:分数大于0且人名是bob或是jake的总分数 平均分数 最小分数 最大分数 计数
举这个实例来试试用MySQL和mongodb分别写一个查询
首先我们先做一些准备工作
MySQL的数据库结构如下
CREATE TABLE `new_schema`.`demo` ( `id` INT NOT NULL, `person` VARCHAR(45) NOT NULL, `score` VARCHAR(45) NOT NULL, PRIMARY KEY (`id`));
建完表之后我们来插入一些数据
INSERT INTO `new_schema`.`demo` (`id`, `person`, `score`) VALUES ('1', 'bob', '50'); INSERT INTO `new_schema`.`demo` (`id`, `person`, `score`) VALUES ('2', 'jake', '60'); INSERT INTO `new_schema`.`demo` (`id`, `person`, `score`) VALUES ('3', 'bob', '100'); INSERT INTO `new_schema`.`demo` (`id`, `person`, `score`) VALUES ('6', 'jake', '100'); INSERT INTO `new_schema`.`demo` (`id`, `person`, `score`) VALUES ('8', 'li', '100');
我截个图方便看一下结构
好 接下来我们进入mongodb的准备工作 看一下建立的mongodb的集合里面文档的结构(基本跟MySQL一毛一样)在这里我就不写插入文档的具体过程了 (为了便看mongodb的显示我都用两种格式显示:一个是表哥模块显示 一个是文本模块显示)
这个是表格模块显示
这个是文本模块显示
/* 1 */ { "_id" : ObjectId("58043fa8e9a7804c05031e17"), "person" : "bob", "sorce" : 50 } /* 2 */ { "_id" : ObjectId("58043fa8e9a7804c05031e18"), "person" : "bob", "sorce" : 100 } /* 3 */ { "_id" : ObjectId("58043fa8e9a7804c05031e19"), "person" : "jake", "sorce" : 60 } /* 4 */ { "_id" : ObjectId("58043fa8e9a7804c05031e1a"), "person" : "jake", "sorce" : 100 } /* 5 */ { "_id" : ObjectId("58043fa8e9a7804c05031e1b"), "person" : "li", "sorce" : 100 }
开始进入正题
现在我想查的MySQL语句是这样的(分数大于0且人名是bob或是jake的总分数 平均分数 最小分数 最大分数 计数)
SELECT person, SUM(score), AVG(score), MIN(score), MAX(score), COUNT(*) FROM demo WHERE score > 0 AND person IN('bob','jake') GROUP BY person;
下面开始用Mongo写出这个查询
首先想到的是聚合框架
先用$match过滤 分数大于0且人名是bob或是jake
db.demo.aggregate( { "$match":{ "$and":[ {"sorce":{"$gt":0}}, {"person":{"$in":["bob","jake"]}} ] } }
得到这个结果
这个是表哥模块显示的结果:
这个是文本模块显示的结果:
/* 1 */ { "_id" : ObjectId("58043fa8e9a7804c05031e17"), "person" : "bob", "sorce" : 50 } /* 2 */ { "_id" : ObjectId("58043fa8e9a7804c05031e18"), "person" : "bob", "sorce" : 100 } /* 3 */ { "_id" : ObjectId("58043fa8e9a7804c05031e19"), "person" : "jake", "sorce" : 60 } /* 4 */ { "_id" : ObjectId("58043fa8e9a7804c05031e1a"), "person" : "jake", "sorce" : 100 }
然后想要分组并且显示最大 最小 总计 平均值 和计数值
那么$group派上用场了:
db.demo.aggregate( { "$match":{ "$and":[ {"sorce":{"$gt":0}}, {"person":{"$in":["bob","jake"]}} ] } }, { "$group":{"_id":"$person", "sumSorce":{"$sum":"$sorce"}, "avgSorce":{"$avg":"$sorce"}, "lowsetSorce":{"$min":"$sorce"}, "highestSorce":{"$max":"$sorce"}, "count":{"$sum":1}} } )
得到的结果就是 分数大于0且人名是bob或是jake的总分数 平均分数 最小分数 最大分数 计数
结果的表格模块显示:
结果的文本模块显示:
/* 1 */ { "_id" : "bob", "sumSorce" : 150, "avgSorce" : 75.0, "lowsetSorce" : 50, "highestSorce" : 100, "count" : 2.0 } /* 2 */ { "_id" : "jake", "sumSorce" : 160, "avgSorce" : 80.0, "lowsetSorce" : 60, "highestSorce" : 100, "count" : 2.0 }
以上所述是小编给大家介绍的MySQL与Mongo简单的查询实例代码,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对网站的支持!
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2025年01月22日
2025年01月22日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]