DDR爱好者之家 Design By 杰米
前言
本文的内容主要是介绍了MYSQL每隔10分钟进行分组统计的实现方法,在画用户登录、操作情况在一天内的分布图时会非常有用,之前我只知道用「存储过程」实现的方法(虽然执行速度快,但真的是太不灵活了),后来学会了用高级点的「group by」方法来灵活实现类似功能。
正文:
-- time_str '2016-11-20 04:31:11' -- date_str 20161120 select concat(left(date_format(time_str, '%y-%m-%d %h:%i'),15),'0') as time_flag, count(*) as count from `security`.`cmd_info` where `date_str`=20161120 group by time_flag order by time_flag; -- 127 rows select round(unix_timestamp(time_str)/(10 * 60)) as timekey, count(*) from `security`.`cmd_info` where `date_str`=20161120 group by timekey order by timekey; -- 126 rows -- 以上2个SQL语句的思路类似——使用「group by」进行区分,但是方法有所不同,前者只能针对10分钟(或1小时)级别,后者可以动态调整间隔大小,两者效率差不多,可以根据实际情况选用 select concat(date(time_str),' ',hour(time_str),':',round(minute(time_str)/10,0)*10), count(*) from `security`.`cmd_info` where `date_str`=20161120 group by date(time_str), hour(time_str), round(minute(time_str)/10,0)*10; -- 145 rows select concat(date(time_str),' ',hour(time_str),':',floor(minute(time_str)/10)*10), count(*) from `security`.`cmd_info` where `date_str`=20161120 group by date(time_str), hour(time_str), floor(minute(time_str)/10)*10; -- 127 rows (和 date_format 那个等价) select concat(date(time_str),' ',hour(time_str),':',ceil(minute(time_str)/10)*10), count(*) from `security`.`cmd_info` where `date_str`=20161120 group by date(time_str), hour(time_str), ceil(minute(time_str)/10)*10; -- 151 rows
&
DELIMITER // DROP PROCEDURE IF EXISTS `usp_cmd_info`; CREATE PROCEDURE `usp_cmd_info`(IN dates VARCHAR(12)) BEGIN SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 00:00:00") AND CONCAT(dates, " 00:10:00") INTO @count_0; SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 00:10:00") AND CONCAT(dates, " 00:20:00") INTO @count_1; ... SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 23:40:00") AND CONCAT(dates, " 23:50:00") INTO @count_142; SELECT count(*) from `cmd_info` where `time_str` BETWEEN CONCAT(dates, " 23:50:00") AND CONCAT(dates, " 23:59:59") INTO @count_143; select @count_0, @count_1, @count_2, @count_3, @count_4, @count_5, @count_6, @count_7, @count_8, @count_9, @count_10, @count_11, @count_12, @count_13, @count_14, @count_15, @count_16, @count_17, @count_18, @count_19, @count_20, @count_21, @count_22, @count_23, @count_24, @count_25, @count_26, @count_27, @count_28, @count_29, @count_30, @count_31, @count_32, @count_33, @count_34, @count_35, @count_36, @count_37, @count_38, @count_39, @count_40, @count_41, @count_42, @count_43, @count_44, @count_45, @count_46, @count_47, @count_48, @count_49, @count_50, @count_51, @count_52, @count_53, @count_54, @count_55, @count_56, @count_57, @count_58, @count_59, @count_60, @count_61, @count_62, @count_63, @count_64, @count_65, @count_66, @count_67, @count_68, @count_69, @count_70, @count_71, @count_72, @count_73, @count_74, @count_75, @count_76, @count_77, @count_78, @count_79, @count_80, @count_81, @count_82, @count_83, @count_84, @count_85, @count_86, @count_87, @count_88, @count_89, @count_90, @count_91, @count_92, @count_93, @count_94, @count_95, @count_96, @count_97, @count_98, @count_99, @count_100, @count_101, @count_102, @count_103, @count_104, @count_105, @count_106, @count_107, @count_108, @count_109, @count_110, @count_111, @count_112, @count_113, @count_114, @count_115, @count_116, @count_117, @count_118, @count_119, @count_120, @count_121, @count_122, @count_123, @count_124, @count_125, @count_126, @count_127, @count_128, @count_129, @count_130, @count_131, @count_132, @count_133, @count_134, @count_135, @count_136, @count_137, @count_138, @count_139, @count_140, @count_141, @count_142, @count_143; END // DELIMITER ; show PROCEDURE status\G CALL usp_cmd_info("2016-10-20");
上面的这段MySQL存储过程的语句非常长,不可能用手工输入,可以用下面的这段Python代码按所需的时间间隔自动生成:
import datetime today = datetime.date.today() # 或 由给定格式字符串转换成 # today = datetime.datetime.strptime('2016-11-21', '%Y-%m-%d') min_today_time = datetime.datetime.combine(today, datetime.time.min) # 2016-11-21 00:00:00 max_today_time = datetime.datetime.combine(today, datetime.time.max) # 2016-11-21 23:59:59 sql_procedure_arr = [] sql_procedure_arr2 = [] for x in xrange(0, 60*24/5, 1): start_datetime = min_today_time + datetime.timedelta(minutes = 5*x) end_datetime = min_today_time + datetime.timedelta(minutes = 5*(x+1)) # print x, start_datetime.strftime("%Y-%m-%d %H:%M:%S"), end_datetime.strftime("%Y-%m-%d %H:%M:%S") select_str = 'SELECT count(*) from `cmd_info` where `time_str` BETWEEN "{0}" AND "{1}" INTO @count_{2};'.format(start_datetime, end_datetime, x) # print select_str sql_procedure_arr.append(select_str) sql_procedure_arr2.append('@count_{0}'.format(x)) print '\n'.join(sql_procedure_arr) print 'select {0};'.format(', '.join(sql_procedure_arr2))
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年01月04日
2025年01月04日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]