DDR爱好者之家 Design By 杰米

本文是通过深度学习框架keras来做SQL注入特征识别, 不过虽然用了keras,但是大部分还是普通的神经网络,只是外加了一些规则化、dropout层(随着深度学习出现的层)。

基本思路就是喂入一堆数据(INT型)、通过神经网络计算(正向、反向)、SOFTMAX多分类概率计算得出各个类的概率,注意:这里只要2个类别:0-正常的文本;1-包含SQL注入的文本

文件分割上,做成了4个python文件:

util类,用来将char转换成int(NN要的都是数字类型的,其他任何类型都要转换成int/float这些才能喂入,又称为feed)

data类,用来获取训练数据,验证数据的类,由于这里的训练是有监督训练,因此此时需要返回的是个元组(x, y)

trainer类,keras的网络模型建模在这里,包括损失函数、训练epoch次数等

predict类,获取几个测试数据,看看效果的预测类

先放trainer类代码,网络定义在这里,最重要的一个,和数据格式一样重要(呵呵,数据格式可是非常重要的,在这种程序中)

import SQL注入Data
import numpy as np
import keras
from keras.models import Sequential
from keras.layers import Dense, Dropout, Activation
from keras.layers.normalization import BatchNormalization
from keras.optimizers import SGD
 
x, y=SQL注入Data.loadSQLInjectData()
availableVectorSize=15
x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availableVectorSize)
y=keras.utils.to_categorical(y, num_classes=2)
 
 
model = Sequential()
model.add(Dense(64, activation='relu', input_dim=availableVectorSize))
model.add(BatchNormalization())
model.add(Dropout(0.3))
model.add(Dense(64, activation='relu'))
model.add(Dropout(0.3))
model.add(Dense(2, activation='softmax'))
 
sgd = SGD(lr=0.001, momentum=0.9)
model.compile(loss='mse',
  optimizer=sgd,
  metrics=['accuracy'])
 
history=model.fit(x, y,epochs=500,batch_size=16)
 
model.save('E:\\sql_checker\\models\\trained_models.h5')
print("DONE, model saved in path-->E:\\sql_checker\\models\\trained_models.h5")
 
import matplotlib.pyplot as plt
plt.plot(history.history['loss'])
plt.title('model loss')
plt.ylabel('loss')
plt.xlabel('epoch')
plt.legend(['train', 'test'], loc='upper left')
plt.show()

先来解释上面这段plt的代码,因为最容易解释,这段代码是用来把每次epoch的训练的损失loss value用折线图表示出来:

使用keras做SQL注入攻击的判断(实例讲解)  

何为训练?何为损失loss value?

训练的目的是为了想让网络最终计算出来的分类数据和我们给出的y一致,那不一致怎么算?不一致就是有损失,也就是说训练的目的是要一致,也就是要损失最小化

怎么让损失最小化?梯度下降,这里用的是SGD优化算法:

from keras.optimizers import SGD
 
sgd = SGD(lr=0.001, momentum=0.9)
model.compile(loss='mse',
  optimizer=sgd,
  metrics=['accuracy'])

上面这段代码的loss='mse'就是定义了用那种损失函数,还有好几种损失函数,大家自己参考啊。

optimizer=sgd就是优化算法用哪个了,不同的optimizer有不同的参数

由于此处用的是全连接NN,因此是需要固定的输入size的,这个函数就是用来固定(不够会补0) 特征向量size的:

x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=availableVectorSize)

再来看看最终的分类输出,是one hot的,这个one hot大家自己查查,很容易的定义,就是比较浪费空间,分类间没有关联性,不过用在这里很方便

y=keras.utils.to_categorical(y, num_classes=2)

然后再说说预测部分代码:

import SQL注入Data
import Converter
 
 
import numpy as np
import keras
from keras.models import load_model
 
print("predict....")
 
x=SQL注入Data.loadTestSQLInjectData()
x=keras.preprocessing.sequence.pad_sequences(x, padding='post', maxlen=15)
 
model=load_model('E:\\sql_checker\\models\\trained_models.h5')
result=model.predict_classes(x, batch_size=len(x))
result=Converter.convert2label(result)
print(result)
 
 
print("DONE")

这部分代码很容易理解,并且连y都没有  

使用keras做SQL注入攻击的判断(实例讲解)  

好了,似乎有那么点意思了吧。

下面把另外几个工具类、数据类代码放出来:

def toints(sentence):
 base=ord('0')
 ary=[]
 for c in sentence:
  ary.append(ord(c)-base)
 return ary
 
 
def convert2label(vector):
 string_array=[]
 for v in vector:
  if v==1:
   string_array.append('SQL注入')
  else:
   string_array.append('正常文本')
 return string_array
import Converter
import numpy as np
 
def loadSQLInjectData():
 x=[]
 x.append(Converter.toints("100"))
 x.append(Converter.toints("150"))
 x.append(Converter.toints("1"))
 x.append(Converter.toints("3"))
 x.append(Converter.toints("19"))
 x.append(Converter.toints("37"))
 x.append(Converter.toints("1'--"))
 x.append(Converter.toints("1' or 1=1;--"))
 x.append(Converter.toints("updatable"))
 x.append(Converter.toints("update tbl"))
 x.append(Converter.toints("update someb"))
 x.append(Converter.toints("update"))
 x.append(Converter.toints("updat"))
 x.append(Converter.toints("update a"))
 x.append(Converter.toints("'--"))
 x.append(Converter.toints("' or 1=1;--"))
 x.append(Converter.toints("aupdatable"))
 x.append(Converter.toints("hello world"))
 
 y=[[0],[0],[0],[0],[0],[0],[1],[1],[0],[1],[1],[0],[0],[1],[1],[1],[0],[0]]
 
 x=np.asarray(x)
 y=np.asarray(y)
 
 return x, y
 
 
def loadTestSQLInjectData(): 
 x=[]
 x.append(Converter.toints("some value"))
 x.append(Converter.toints("-1"))
 x.append(Converter.toints("' or 1=1;--"))
 x.append(Converter.toints("noupdate"))
 x.append(Converter.toints("update "))
 x.append(Converter.toints("update"))
 x.append(Converter.toints("update z"))
 x=np.asarray(x)
 return x

以上这篇使用keras做SQL注入攻击的判断(实例讲解)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。