DDR爱好者之家 Design By 杰米

锁,在现实生活中是为我们想要隐藏于外界所使用的一种工具。在计算机中,是协调多个进程或县城并发访问某一资源的一种机制。在数据库当中,除了传统的计算资源(CPU、RAM、I/O等等)的争用之外,数据也是一种供许多用户共享访问的资源。如何保证数据并发访问的一致性、有效性,是所有数据库必须解决的一个问题,锁的冲突也是影响数据库并发访问性能的一个重要因素。从这一角度来说,锁对于数据库而言就显得尤为重要。

MySQL锁

相对于其他的数据库而言,MySQL的锁机制比较简单,最显著的特点就是不同的存储引擎支持不同的锁机制。根据不同的存储引擎,MySQL中锁的特性可以大致归纳如下:

行锁 表锁 页锁 MyISAM √
BDB √

InnoDB √

开销、加锁速度、死锁、粒度、并发性能

  • 表锁:开销小,加锁快;不会出现死锁;锁定力度大,发生锁冲突概率高,并发度最低

  • 行锁:开销大,加锁慢;会出现死锁;锁定粒度小,发生锁冲突的概率低,并发度高

  • 页锁:开销和加锁速度介于表锁和行锁之间;会出现死锁;锁定粒度介于表锁和行锁之间,并发度一般

从上述的特点课件,很难笼统的说哪种锁最好,只能根据具体应用的特点来说哪种锁更加合适。仅仅从锁的角度来说的话:

表锁更适用于以查询为主,只有少量按索引条件更新数据的应用;行锁更适用于有大量按索引条件并发更新少量不同数据,同时又有并发查询的应用。(PS:由于BDB已经被InnoDB所取代,我们只讨论MyISAM表锁和InnoDB行锁的问题)

MyISAM表锁

MyISAM存储引擎只支持表锁,这也是MySQL开始几个版本中唯一支持的锁类型。随着应用对事务完整性和并发性要求的不断提高,MySQL才开始开发基于事务的存储引擎,后来慢慢出现了支持页锁的BDB存储引擎和支持行锁的InnoDB存储引擎(实际 InnoDB是单独的一个公司,现在已经被Oracle公司收购)。但是MyISAM的表锁依然是使用最为广泛的锁类型。本节将详细介绍MyISAM表锁的使用。

查询表级锁争用情况

可以通过检查table_locks_waited和table_locks_immediate状态变量来分析系统上的表锁定争夺:

mysql> show status like 'table%';
+-----------------------+-------+
| Variable_name | Value |
+-----------------------+-------+
| Table_locks_immediate | 2979 |
| Table_locks_waited | 0 |
+-----------------------+-------+
2 rows in set (0.00 sec))

如果Table_locks_waited的值比较高,则说明存在着较严重的表级锁争用情况。

MySQL表级锁的锁模式

MySQL的表级锁有两种模式:表共享读锁(Table Read Lock)和表独占写锁(Table Write Lock)。锁模式的兼容性如下表所示。

MySQL中的表锁兼容性

请求锁模式

是否兼容

当前锁模式

None 读锁 写锁 读锁 是 是 否 写锁 是 否 否

可见,对MyISAM表的读操作,不会阻塞其他用户对同一表的读请求,但会阻塞对同一表的写请求;对 MyISAM表的写操作,则会阻塞其他用户对同一表的读和写操作;MyISAM表的读操作与写操作之间,以及写操作之间是串行的!根据如下表所示的例子可以知道,当一个线程获得对一个表的写锁后,只有持有锁的线程可以对表进行更新操作。其他线程的读、写操作都会等待,直到锁被释放为止。

MyISAM存储引擎的写阻塞读例子

session_1 session_2

获得表film_text的WRITE锁定

mysql> lock table film_text write;
Query OK, 0 rows affected (0.00 sec)

当前session对锁定表的查询、更新、插入操作都可以执行:

mysql> select film_id,title from film_text where film_id = 1001;
+---------+-------------+
| film_id | title       |
+---------+-------------+
| 1001    | Update Test |
+---------+-------------+
1 row in set (0.00 sec)
mysql> insert into film_text (film_id,title) values(1003,'Test');
Query OK, 1 row affected (0.00 sec)
mysql> update film_text set title = 'Test' where film_id = 1001;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0

其他session对锁定表的查询被阻塞,需要等待锁被释放:

mysql> select film_id,title from film_text where film_id = 1001;

等待

释放锁:

mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec) 等待

Session2获得锁,查询返回:

mysql> select film_id,title from film_text where film_id = 1001;
+---------+-------+
| film_id | title |
+---------+-------+
| 1001    | Test  |
+---------+-------+
1 row in set (57.59 sec)

如何加表锁

MyISAM在执行查询语句(SELECT)前,会自动给涉及的所有表加读锁,在执行更新操作(UPDATE、DELETE、INSERT等)前,会自动给涉及的表加写锁,这个过程并不需要用户干预,因此,用户一般不需要直接用LOCK TABLE命令给MyISAM表显式加锁。在本书的示例中,显式加锁基本上都是为了方便而已,并非必须如此。

给MyISAM表显示加锁,一般是为了在一定程度模拟事务操作,实现对某一时间点多个表的一致性读取。例如,有一个订单表orders,其中记录有各订单的总金额total,同时还有一个订单明细表order_detail,其中记录有各订单每一产品的金额小计 subtotal,假设我们需要检查这两个表的金额合计是否相符,可能就需要执行如下两条SQL:

Select sum(total) from orders;
Select sum(subtotal) from order_detail;

这时,如果不先给两个表加锁,就可能产生错误的结果,因为第一条语句执行过程中,order_detail表可能已经发生了改变。因此,正确的方法应该是:

Lock tables orders read local, order_detail read local;
Select sum(total) from orders;
Select sum(subtotal) from order_detail;
Unlock tables;

要特别说明以下两点内容。

  • 上面的例子在LOCK TABLES时加了“local”选项,其作用就是在满足MyISAM表并发插入条件的情况下,允许其他用户在表尾并发插入记录,有关MyISAM表的并发插入问题,在后面的章节中还会进一步介绍。

  • 在用LOCK TABLES给表显式加表锁时,必须同时取得所有涉及到表的锁,并且MySQL不支持锁升级。也就是说,在执行LOCK TABLES后,只能访问显式加锁的这些表,不能访问未加锁的表;同时,如果加的是读锁,那么只能执行查询操作,而不能执行更新操作。其实,在自动加锁的情况下也基本如此,MyISAM总是一次获得SQL语句所需要的全部锁。这也正是MyISAM表不会出现死锁(Deadlock Free)的原因。

在如下表所示的例子中,一个session使用LOCK TABLE命令给表film_text加了读锁,这个session可以查询锁定表中的记录,但更新或访问其他表都会提示错误;同时,另外一个session可以查询表中的记录,但更新就会出现锁等待。

MyISAM存储引擎的读阻塞写例子

session_1 session_2

获得表film_text的READ锁定

mysql> lock table film_text write;
Query OK, 0 rows affected (0.00 sec)

当前session可以查询该表记录

mysql> select film_id,title from film_text where film_id = 1001;
+---------+------------------+
| film_id | title            |
+---------+------------------+
| 1001    | ACADEMY DINOSAUR |
+---------+------------------+
1 row in set (0.00 sec)

其他session也可以查询该表的记录

mysql> select film_id,title from film_text where film_id = 1001;
+---------+------------------+
| film_id | title            |
+---------+------------------+
| 1001    | ACADEMY DINOSAUR |
+---------+------------------+
1 row in set (0.00 sec)

当前session不能查询没有锁定的表

mysql> select film_id,title from film where film_id = 1001;
ERROR 1100 (HY000): Table 'film' was not locked with LOCK TABLES

其他session可以查询或者更新未锁定的表

mysql> select film_id,title from film where film_id = 1001;
+---------+---------------+
| film_id | title         |
+---------+---------------+
| 1001    | update record |
+---------+---------------+
1 row in set (0.00 sec)
mysql> update film set title = 'Test' where film_id = 1001;
Query OK, 1 row affected (0.04 sec)
Rows matched: 1  Changed: 1  Warnings: 0

当前session中插入或者更新锁定的表都会提示错误:

mysql> insert into film_text (film_id,title) values(1002,'Test');
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated
mysql> update film_text set title = 'Test' where film_id = 1001;
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated

其他session更新锁定表会等待获得锁:

mysql> update film_text set title = 'Test' where film_id = 1001;

等待

释放锁

mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec) 等待

Session获得锁,更新操作完成:

mysql> update film_text set title = 'Test' where film_id = 1001;
Query OK, 1 row affected (1 min 0.71 sec)
Rows matched: 1  Changed: 1  Warnings: 0

注意,当使用LOCK TABLES时,不仅需要一次锁定用到的所有表,而且,同一个表在SQL语句中出现多少次,就要通过与SQL语句中相同的别名锁定多少次,否则也会出错!举例说明如下。

(1)对actor表获得读锁:

mysql> lock table actor read;
Query OK, 0 rows affected (0.00 sec)

(2)但是通过别名访问会提示错误:

mysql> select a.first_name,a.last_name,b.first_name,b.last_name from actor a,actor b where a.first_name = b.first_name and a.first_name = 'Lisa' and a.last_name = 'Tom' and a.last_name <> b.last_name;
ERROR 1100 (HY000): Table 'a' was not locked with LOCK TABLES

(3)需要对别名分别锁定:

mysql> lock table actor as a read,actor as b read;
Query OK, 0 rows affected (0.00 sec)

(4)按照别名的查询可以正确执行:

mysql> select a.first_name,a.last_name,b.first_name,b.last_name from actor a,actor b where a.first_name = b.first_name and a.first_name = 'Lisa' and a.last_name = 'Tom' and a.last_name <> b.last_name;
+------------+-----------+------------+-----------+
| first_name | last_name | first_name | last_name |
+------------+-----------+------------+-----------+
| Lisa | Tom | LISA | MONROE |
+------------+-----------+------------+-----------+

1 row in set (0.00 sec)

并发插入(Concurrent Inserts)

上文提到过MyISAM表的读和写是串行的,但这是就总体而言的。在一定条件下,MyISAM表也支持查询和插入操作的并发进行。

MyISAM存储引擎有一个系统变量concurrent_insert,专门用以控制其并发插入的行为,其值分别可以为0、1或2。

  • 当concurrent_insert设置为0时,不允许并发插入。

  • 当concurrent_insert设置为1时,如果MyISAM表中没有空洞(即表的中间没有被删除的行),MyISAM允许在一个进程读表的同时,另一个进程从表尾插入记录。这也是MySQL的默认设置。

  • 当concurrent_insert设置为2时,无论MyISAM表中有没有空洞,都允许在表尾并发插入记录。

在如下表所示的例子中,session_1获得了一个表的READ LOCAL锁,该线程可以对表进行查询操作,但不能对表进行更新操作;其他的线程(session_2),虽然不能对表进行删除和更新操作,但却可以对该表进行并发插入操作,这里假设该表中间不存在空洞。

MyISAM存储引擎的读写(INSERT)并发例子

session_1 session_2

获得表film_text的READ LOCAL锁定

mysql> lock table film_text read local;
Query OK, 0 rows affected (0.00 sec)

当前session不能对锁定表进行更新或者插入操作:

mysql> insert into film_text (film_id,title) values(1002,'Test');
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated
mysql> update film_text set title = 'Test' where film_id = 1001;
ERROR 1099 (HY000): Table 'film_text' was locked with a READ lock and can't be updated

其他session可以进行插入操作,但是更新会等待:

mysql> insert into film_text (film_id,title) values(1002,'Test');
Query OK, 1 row affected (0.00 sec)
mysql> update film_text set title = 'Update Test' where film_id = 1001;

等待

当前session不能访问其他session插入的记录:

mysql> select film_id,title from film_text where film_id = 1002;
Empty set (0.00 sec)

释放锁:

mysql> unlock tables;
Query OK, 0 rows affected (0.00 sec)

等待

当前session解锁后可以获得其他session插入的记录:

mysql> select film_id,title from film_text where film_id = 1002;
+---------+-------+
| film_id | title |
+---------+-------+
| 1002    | Test  |
+---------+-------+
1 row in set (0.00 sec)

Session2获得锁,更新操作完成:

mysql> update film_text set title = 'Update Test' where film_id = 1001;
Query OK, 1 row affected (1 min 17.75 sec)
Rows matched: 1  Changed: 1  Warnings: 0

可以利用MyISAM存储引擎的并发插入特性,来解决应用中对同一表查询和插入的锁争用。例如,将concurrent_insert系统变量设为2,总是允许并发插入;同时,通过定期在系统空闲时段执行 OPTIMIZE TABLE语句来整理空间碎片,收回因删除记录而产生的中间空洞。有关OPTIMIZE TABLE语句的详细介绍,可以参见第18章中“两个简单实用的优化方法”一节的内容。

MyISAM的锁调度

前面讲过,MyISAM存储引擎的读锁和写锁是互斥的,读写操作是串行的。那么,一个进程请求某个 MyISAM表的读锁,同时另一个进程也请求同一表的写锁,MySQL如何处理呢?答案是写进程先获得锁。不仅如此,即使读请求先到锁等待队列,写请求后到,写锁也会插到读锁请求之前!这是因为MySQL认为写请求一般比读请求要重要。这也正是MyISAM表不太适合于有大量更新操作和查询操作应用的原因,因为,大量的更新操作会造成查询操作很难获得读锁,从而可能永远阻塞。这种情况有时可能会变得非常糟糕!幸好我们可以通过一些设置来调节MyISAM 的调度行为。

  • 通过指定启动参数low-priority-updates,使MyISAM引擎默认给予读请求以优先的权利。

  • 通过执行命令SET LOW_PRIORITY_UPDATES=1,使该连接发出的更新请求优先级降低。

  • 通过指定INSERT、UPDATE、DELETE语句的LOW_PRIORITY属性,降低该语句的优先级。

虽然上面3种方法都是要么更新优先,要么查询优先的方法,但还是可以用其来解决查询相对重要的应用(如用户登录系统)中,读锁等待严重的问题。

另外,MySQL也提供了一种折中的办法来调节读写冲突,即给系统参数max_write_lock_count设置一个合适的值,当一个表的读锁达到这个值后,MySQL就暂时将写请求的优先级降低,给读进程一定获得锁的机会。

上面已经讨论了写优先调度机制带来的问题和解决办法。这里还要强调一点:一些需要长时间运行的查询操作,也会使写进程“饿死”!因此,应用中应尽量避免出现长时间运行的查询操作,不要总想用一条SELECT语句来解决问题,因为这种看似巧妙的SQL语句,往往比较复杂,执行时间较长,在可能的情况下可以通过使用中间表等措施对SQL语句做一定的“分解”,使每一步查询都能在较短时间完成,从而减少锁冲突。如果复杂查询不可避免,应尽量安排在数据库空闲时段执行,比如一些定期统计可以安排在夜间执行。

InnoDB锁问题

InnoDB与MyISAM的最大不同有两点:一是支持事务(TRANSACTION);二是采用了行级锁。行级锁与表级锁本来就有许多不同之处,另外,事务的引入也带来了一些新问题。下面我们先介绍一点背景知识,然后详细讨论InnoDB的锁问题。

背景知识

1.事务(Transaction)及其ACID属性

事务是由一组SQL语句组成的逻辑处理单元,事务具有以下4个属性,通常简称为事务的ACID属性。

  • 原子性(Atomicity):事务是一个原子操作单元,其对数据的修改,要么全都执行,要么全都不执行。

  • 一致性(Consistent):在事务开始和完成时,数据都必须保持一致状态。这意味着所有相关的数据规则都必须应用于事务的修改,以保持数据的完整性;事务结束时,所有的内部数据结构(如B树索引或双向链表)也都必须是正确的。

  • 隔离性(Isolation):数据库系统提供一定的隔离机制,保证事务在不受外部并发操作影响的“独立”环境执行。这意味着事务处理过程中的中间状态对外部是不可见的,反之亦然。

  • 持久性(Durable):事务完成之后,它对于数据的修改是永久性的,即使出现系统故障也能够保持。

银行转帐就是事务的一个典型例子。

2.并发事务处理带来的问题

相对于串行处理来说,并发事务处理能大大增加数据库资源的利用率,提高数据库系统的事务吞吐量,从而可以支持更多的用户。但并发事务处理也会带来一些问题,主要包括以下几种情况。

  • 更新丢失(Lost Update):当两个或多个事务选择同一行,然后基于最初选定的值更新该行时,由于每个事务都不知道其他事务的存在,就会发生丢失更新问题--最后的更新覆盖了由其他事务所做的更新。例如,两个编辑人员制作了同一文档的电子副本。每个编辑人员独立地更改其副本,然后保存更改后的副本,这样就覆盖了原始文档。最后保存其更改副本的编辑人员覆盖另一个编辑人员所做的更改。如果在一个编辑人员完成并提交事务之前,另一个编辑人员不能访问同一文件,则可避免此问题。

  • 脏读(Dirty Reads):一个事务正在对一条记录做修改,在这个事务完成并提交前,这条记录的数据就处于不一致状态;这时,另一个事务也来读取同一条记录,如果不加控制,第二个事务读取了这些“脏”数据,并据此做进一步的处理,就会产生未提交的数据依赖关系。这种现象被形象地叫做"脏读"。

  • 不可重复读(Non-Repeatable Reads):一个事务在读取某些数据后的某个时间,再次读取以前读过的数据,却发现其读出的数据已经发生了改变、或某些记录已经被删除了!这种现象就叫做“不可重复读”。

  • 幻读(Phantom Reads):一个事务按相同的查询条件重新读取以前检索过的数据,却发现其他事务插入了满足其查询条件的新数据,这种现象就称为“幻读”。

3.事务隔离级别

在上面讲到的并发事务处理带来的问题中,“更新丢失”通常是应该完全避免的。但防止更新丢失,并不能单靠数据库事务控制器来解决,需要应用程序对要更新的数据加必要的锁来解决,因此,防止更新丢失应该是应用的责任。

“脏读”、“不可重复读”和“幻读”,其实都是数据库读一致性问题,必须由数据库提供一定的事务隔离机制来解决。数据库实现事务隔离的方式,基本上可分为以下两种。

  • 一种是在读取数据前,对其加锁,阻止其他事务对数据进行修改。

  • 另一种是不用加任何锁,通过一定机制生成一个数据请求时间点的一致性数据快照(Snapshot),并用这个快照来提供一定级别(语句级或事务级)的一致性读取。从用户的角度来看,好像是数据库可以提供同一数据的多个版本,因此,这种技术叫做数据多版本并发控制(MultiVersion Concurrency Control,简称MVCC或MCC),也经常称为多版本数据库。

数据库的事务隔离越严格,并发副作用越小,但付出的代价也就越大,因为事务隔离实质上就是使事务在一定程度上 “串行化”进行,这显然与“并发”是矛盾的。同时,不同的应用对读一致性和事务隔离程度的要求也是不同的,比如许多应用对“不可重复读”和“幻读”并不敏感,可能更关心数据并发访问的能力。

为了解决“隔离”与“并发”的矛盾,ISO/ANSI SQL92定义了4个事务隔离级别,每个级别的隔离程度不同,允许出现的副作用也不同,应用可以根据自己的业务逻辑要求,通过选择不同的隔离级别来平衡 “隔离”与“并发”的矛盾。下表很好地概括了这4个隔离级别的特性。

4种隔离级别比较

读数据一致性及允许的并发副作用

隔离级别

读数据一致性 脏读 不可重复读 幻读

未提交读(Read uncommitted)

最低级别,只能保证不读取物理上损坏的数据

已提交度(Read committed)

语句级

可重复读(Repeatable read)

事务级

可序列化(Serializable)

最高级别,事务级

最后要说明的是:各具体数据库并不一定完全实现了上述4个隔离级别,例如,Oracle只提供Read committed和Serializable两个标准隔离级别,另外还提供自己定义的Read only隔离级别;SQL Server除支持上述ISO/ANSI SQL92定义的4个隔离级别外,还支持一个叫做“快照”的隔离级别,但严格来说它是一个用MVCC实现的Serializable隔离级别。MySQL 支持全部4个隔离级别,但在具体实现时,有一些特点,比如在一些隔离级别下是采用MVCC一致性读,但某些情况下又不是,这些内容在后面的章节中将会做进一步介绍。

获取InnoDB行锁争用情况

可以通过检查InnoDB_row_lock状态变量来分析系统上的行锁的争夺情况:

mysql> show status like 'innodb_row_lock%';
+-------------------------------+-------+
| Variable_name | Value |
+-------------------------------+-------+
| InnoDB_row_lock_current_waits | 0 |
| InnoDB_row_lock_time | 0 |
| InnoDB_row_lock_time_avg | 0 |
| InnoDB_row_lock_time_max | 0 |
| InnoDB_row_lock_waits | 0 |
+-------------------------------+-------+
5 rows in set (0.01 sec)

如果发现锁争用比较严重,如InnoDB_row_lock_waits和InnoDB_row_lock_time_avg的值比较高,还可以通过设置InnoDB Monitors来进一步观察发生锁冲突的表、数据行等,并分析锁争用的原因。

具体方法如下:

mysql> CREATE TABLE innodb_monitor(a INT) ENGINE=INNODB;
Query OK, 0 rows affected (0.14 sec)

然后就可以用下面的语句来进行查看:

mysql> Show innodb status\G;
*************************** 1. row ***************************
Type: InnoDB
Name:
Status:
…
…
------------
TRANSACTIONS
------------
Trx id counter 0 117472192
Purge done for trx's n:o < 0 117472190 undo n:o < 0 0
History list length 17
Total number of lock structs in row lock hash table 0
LIST OF TRANSACTIONS FOR EACH SESSION:
---TRANSACTION 0 117472185, not started, process no 11052, OS thread id 1158191456
MySQL thread id 200610, query id 291197 localhost root
---TRANSACTION 0 117472183, not started, process no 11052, OS thread id 1158723936
MySQL thread id 199285, query id 291199 localhost root
Show innodb status
…

监视器可以通过发出下列语句来停止查看:

mysql> DROP TABLE innodb_monitor;
Query OK, 0 rows affected (0.05 sec)

设置监视器后,在SHOW INNODB STATUS的显示内容中,会有详细的当前锁等待的信息,包括表名、锁类型、锁定记录的情况等,便于进行进一步的分析和问题的确定。打开监视器以后,默认情况下每15秒会向日志中记录监控的内容,如果长时间打开会导致.err文件变得非常的巨大,所以用户在确认问题原因之后,要记得删除监控表以关闭监视器,或者通过使用“--console”选项来启动服务器以关闭写日志文件。

InnoDB的行锁模式及加锁方法

InnoDB实现了以下两种类型的行锁。

  • 共享锁(S):允许一个事务去读一行,阻止其他事务获得相同数据集的排他锁。

  • 排他锁(X):允许获得排他锁的事务更新数据,阻止其他事务取得相同数据集的共享读锁和排他写锁。另外,为了允许行锁和表锁共存,实现多粒度锁机制,InnoDB还有两种内部使用的意向锁(Intention Locks),这两种意向锁都是表锁。

  • 意向共享锁(IS):事务打算给数据行加行共享锁,事务在给一个数据行加共享锁前必须先取得该表的IS锁。

  • 意向排他锁(IX):事务打算给数据行加行排他锁,事务在给一个数据行加排他锁前必须先取得该表的IX锁。

上述锁模式的兼容情况具体如下表所示。

InnoDB行锁模式兼容性列表

请求锁模式

是否兼容

当前锁模式

X IX S IS X 冲突 冲突 冲突 冲突 IX 冲突 兼容 冲突 兼容 S 冲突 冲突 兼容 兼容 IS 冲突 兼容 兼容 兼容

如果一个事务请求的锁模式与当前的锁兼容,InnoDB就将请求的锁授予该事务;反之,如果两者不兼容,该事务就要等待锁释放。

意向锁是InnoDB自动加的,不需用户干预。对于UPDATE、DELETE和INSERT语句,InnoDB会自动给涉及数据集加排他锁(X);对于普通SELECT语句,InnoDB不会加任何锁;事务可以通过以下语句显示给记录集加共享锁或排他锁。

  • 共享锁(S):SELECT * FROM table_name WHERE ... LOCK IN SHARE MODE。

  • 排他锁(X):SELECT * FROM table_name WHERE ... FOR UPDATE。

用SELECT ... IN SHARE MODE获得共享锁,主要用在需要数据依存关系时来确认某行记录是否存在,并确保没有人对这个记录进行UPDATE或者DELETE操作。但是如果当前事务也需要对该记录进行更新操作,则很有可能造成死锁,对于锁定行记录后需要进行更新操作的应用,应该使用SELECT... FOR UPDATE方式获得排他锁。

在如下表所示的例子中,使用了SELECT ... IN SHARE MODE加锁后再更新记录,看看会出现什么情况,其中actor表的actor_id字段为主键。

InnoDB存储引擎的共享锁例子

session_1 session_2 mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178      | LISA       | MONROE    |
+----------+------------+-----------+
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178      | LISA       | MONROE    |
+----------+------------+-----------+
1 row in set (0.00 sec)

当前session对actor_id=178的记录加share mode 的共享锁:

mysql> select actor_id,first_name,last_name from actor where actor_id = 178lock in share mode;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178      | LISA       | MONROE    |
+----------+------------+-----------+
1 row in set (0.01 sec)

其他session仍然可以查询记录,并也可以对该记录加share mode的共享锁:

mysql> select actor_id,first_name,last_name from actor where actor_id = 178lock in share mode;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178      | LISA       | MONROE    |
+----------+------------+-----------+
1 row in set (0.01 sec)

当前session对锁定的记录进行更新操作,等待锁:

mysql> update actor set last_name = 'MONROE T' where actor_id = 178;

等待

其他session也对该记录进行更新操作,则会导致死锁退出:

mysql> update actor set last_name = 'MONROE T' where actor_id = 178;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

获得锁后,可以成功更新:

mysql> update actor set last_name = 'MONROE T' where actor_id = 178;
Query OK, 1 row affected (17.67 sec)
Rows matched: 1  Changed: 1  Warnings: 0

当使用SELECT...FOR UPDATE加锁后再更新记录,出现如下表所示的情况。

InnoDB存储引擎的排他锁例子

session_1 session_2 mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178      | LISA       | MONROE    |
+----------+------------+-----------+
1 row in set (0.00 sec) mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178      | LISA       | MONROE    |
+----------+------------+-----------+
1 row in set (0.00 sec)

当前session对actor_id=178的记录加for update的排它锁:

mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178      | LISA       | MONROE    |
+----------+------------+-----------+
1 row in set (0.00 sec)

其他session可以查询该记录,但是不能对该记录加共享锁,会等待获得锁:

mysql> select actor_id,first_name,last_name from actor where actor_id = 178;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178      | LISA       | MONROE    |
+----------+------------+-----------+
1 row in set (0.00 sec)
mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;

等待

当前session可以对锁定的记录进行更新操作,更新后释放锁:

mysql> update actor set last_name = 'MONROE T' where actor_id = 178;
Query OK, 1 row affected (0.00 sec)
Rows matched: 1  Changed: 1  Warnings: 0
mysql> commit;
Query OK, 0 rows affected (0.01 sec)

其他session获得锁,得到其他session提交的记录:

mysql> select actor_id,first_name,last_name from actor where actor_id = 178 for update;
+----------+------------+-----------+
| actor_id | first_name | last_name |
+----------+------------+-----------+
| 178      | LISA       | MONROE T  |
+----------+------------+-----------+
1 row in set (9.59 sec)


InnoDB行锁实现方式

InnoDB行锁是通过给索引上的索引项加锁来实现的,这一点MySQL与Oracle不同,后者是通过在数据块中对相应数据行加锁来实现的。InnoDB这种行锁实现特点意味着:只有通过索引条件检索数据,InnoDB才使用行级锁,否则,InnoDB将使用表锁!

在实际应用中,要特别注意InnoDB行锁的这一特性,不然的话,可能导致大量的锁冲突,从而影响并发性能。下面通过一些实际例子来加以说明。

(1)在不通过索引条件查询的时候,InnoDB确实使用的是表锁,而不是行锁。

在如下所示的例子中,开始tab_no_index表没有索引:

mysql> create table tab_no_index(id int,name varchar(10)) engine=innodb;
Query OK, 0 rows affected (0.15 sec)
mysql> insert into tab_no_index values(1,'1'),(2,'2'),(3,'3'),(4,'4');
Query OK, 4 rows affected (0.00 sec)
Records: 4 Duplicates: 0 Warnings: 0

InnoDB存储引擎的表在不使用索引时使用表锁例子

session_1 session_2 mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_no_index where id = 1 ;
+------+------+
| id   | name |
+------+------+
| 1    | 1    |
+------+------+
1 row in set (0.00 sec) mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_no_index where id = 2 ;
+------+------+
| id   | name |
+------+------+
| 2    | 2    |
+------+------+
1 row in set (0.00 sec) mysql> select * from tab_no_index where id = 1 for update;
+------+------+
| id   | name |
+------+------+
| 1    | 1    |
+------+------+
1 row in set (0.00 sec) mysql> select * from tab_no_index where id = 2 for update;

等待

在如上表所示的例子中,看起来session_1只给一行加了排他锁,但session_2在请求其他行的排他锁时,却出现了锁等待!原因就是在没有索引的情况下,InnoDB只能使用表锁。当我们给其增加一个索引后,InnoDB就只锁定了符合条件的行,如下表所示。

创建tab_with_index表,id字段有普通索引:

mysql> create table tab_with_index(id int,name varchar(10)) engine=innodb;
Query OK, 0 rows affected (0.15 sec)
mysql> alter table tab_with_index add index id(id);
Query OK, 4 rows affected (0.24 sec)
Records: 4 Duplicates: 0 Warnings: 0

InnoDB存储引擎的表在使用索引时使用行锁例子

session_1 session_2 mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_with_index where id = 1 ;
+------+------+
| id   | name |
+------+------+
| 1    | 1    |
+------+------+
1 row in set (0.00 sec) mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from tab_with_index where id = 2 ;
+------+------+
| id   | name |
+------+------+
| 2    | 2    |
+------+------+
1 row in set (0.00 sec) mysql> select * from tab_with_index where id = 1 for update;
+------+------+
| id   | name |
+------+------+
| 1    | 1    |
+------+------+
1 row in set (0.00 sec) mysql> select * from tab_with_index where id = 2 for update;
+------+------+
| id   | name |
+------+------+
| 2    | 2    |
+------+------+
1 row in set (0.00 sec)

(2)由于MySQL的行锁是针对索引加的锁,不是针对记录加的锁,所以虽然是访问不同行的记录,但是如果是使用相同的索引键,是会出现锁冲突的。应用设计的时候要注意这一点。

在如下表所示的例子中,表tab_with_index的id字段有索引,name字段没有索引:

mysql> alter table tab_with_index drop index name;
Query OK, 4 rows affected (0.22 sec)
Records: 4 Duplicates: 0 Warnings: 0
mysql> insert into tab_with_index values(1,'4');
Query OK, 1 row affected (0.00 sec)
mysql> select * from tab_with_index where id = 1;
+------+------+
| id | name |
+------+------+
| 1 | 1 |
| 1 | 4 |
+------+------+
2 rows in set (0.00 sec)

InnoDB存储引擎使用相同索引键的阻塞例子

session_1 session_2 mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec) mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec) mysql> select * from tab_with_index where id = 1 and name = '1' for update;
+------+------+
| id   | name |
+------+------+
| 1    | 1    |
+------+------+
1 row in set (0.00 sec)

虽然session_2访问的是和session_1不同的记录,但是因为使用了相同的索引,所以需要等待锁:

mysql> select * from tab_with_index where id = 1 and name = '4' for update;

等待

(3)当表有多个索引的时候,不同的事务可以使用不同的索引锁定不同的行,另外,不论是使用主键索引、唯一索引或普通索引,InnoDB都会使用行锁来对数据加锁。

在如下表所示的例子中,表tab_with_index的id字段有主键索引,name字段有普通索引:

mysql> alter table tab_with_index add index name(name);
Query OK, 5 rows affected (0.23 sec)
Records: 5 Duplicates: 0 Warnings: 0

InnoDB存储引擎的表使用不同索引的阻塞例子

session_1 session_2 mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec) mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec) mysql> select * from tab_with_index where id = 1 for update;
+------+------+
| id   | name |
+------+------+
| 1    | 1    |
| 1    | 4    |
+------+------+
2 rows in set (0.00 sec)

Session_2使用name的索引访问记录,因为记录没有被索引,所以可以获得锁:

mysql> select * from tab_with_index where name = '2' for update;
+------+------+
| id   | name |
+------+------+
| 2    | 2    |
+------+------+
1 row in set (0.00 sec)

由于访问的记录已经被session_1锁定,所以等待获得锁。:

mysql> select * from tab_with_index where name = '4' for update;

(4)即便在条件中使用了索引字段,但是否使用索引来检索数据是由MySQL通过判断不同执行计划的代价来决定的,如果MySQL认为全表扫描效率更高,比如对一些很小的表,它就不会使用索引,这种情况下InnoDB将使用表锁,而不是行锁。因此,在分析锁冲突时,别忘了检查SQL的执行计划,以确认是否真正使用了索引。

在下面的例子中,检索值的数据类型与索引字段不同,虽然MySQL能够进行数据类型转换,但却不会使用索引,从而导致InnoDB使用表锁。通过用explain检查两条SQL的执行计划,我们可以清楚地看到了这一点。

例子中tab_with_index表的name字段有索引,但是name字段是varchar类型的,如果where条件中不是和varchar类型进行比较,则会对name进行类型转换,而执行的全表扫描。

mysql> alter table tab_no_index add index name(name);
Query OK, 4 rows affected (8.06 sec)
Records: 4 Duplicates: 0 Warnings: 0
mysql> explain select * from tab_with_index where name = 1 \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: tab_with_index
type: ALL
possible_keys: name
key: NULL
key_len: NULL
ref: NULL
rows: 4
Extra: Using where
1 row in set (0.00 sec)
mysql> explain select * from tab_with_index where name = '1' \G
*************************** 1. row ***************************
id: 1
select_type: SIMPLE
table: tab_with_index
type: ref
possible_keys: name
key: name
key_len: 23
ref: const
rows: 1
Extra: Using where
1 row in set (0.00 sec)

间隙锁(Next-Key锁)

当我们用范围条件而不是相等条件检索数据,并请求共享或排他锁时,InnoDB会给符合条件的已有数据记录的索引项加锁;对于键值在条件范围内但并不存在的记录,叫做“间隙(GAP)”,InnoDB也会对这个“间隙”加锁,这种锁机制就是所谓的间隙锁(Next-Key锁)。

举例来说,假如emp表中只有101条记录,其empid的值分别是 1,2,...,100,101,下面的SQL:

Select * from emp where empid > 100 for update;

是一个范围条件的检索,InnoDB不仅会对符合条件的empid值为101的记录加锁,也会对empid大于101(这些记录并不存在)的“间隙”加锁。

InnoDB使用间隙锁的目的,一方面是为了防止幻读,以满足相关隔离级别的要求,对于上面的例子,要是不使用间隙锁,如果其他事务插入了empid大于100的任何记录,那么本事务如果再次执行上述语句,就会发生幻读;另外一方面,是为了满足其恢复和复制的需要。有关其恢复和复制对锁机制的影响,以及不同隔离级别下InnoDB使用间隙锁的情况,在后续的章节中会做进一步介绍。

很显然,在使用范围条件检索并锁定记录时,InnoDB这种加锁机制会阻塞符合条件范围内键值的并发插入,这往往会造成严重的锁等待。因此,在实际应用开发中,尤其是并发插入比较多的应用,我们要尽量优化业务逻辑,尽量使用相等条件来访问更新数据,避免使用范围条件。

还要特别说明的是,InnoDB除了通过范围条件加锁时使用间隙锁外,如果使用相等条件请求给一个不存在的记录加锁,InnoDB也会使用间隙锁!

在如下表所示的例子中,假如emp表中只有101条记录,其empid的值分别是1,2,......,100,101。

InnoDB存储引擎的间隙锁阻塞例子

session_1 session_2 mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation  |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec) mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation  |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)

当前session对不存在的记录加for update的锁:

mysql> select * from emp where empid = 102 for update;
Empty set (0.00 sec)

这时,如果其他session插入empid为102的记录(注意:这条记录并不存在),也会出现锁等待:

mysql>insert into emp(empid,...) values(102,...);

阻塞等待

Session_1 执行rollback:

mysql> rollback;
Query OK, 0 rows affected (13.04 sec)

由于其他session_1回退后释放了Next-Key锁,当前session可以获得锁并成功插入记录:

mysql>insert into emp(empid,...) values(102,...);
Query OK, 1 row affected (13.35 sec)

恢复和复制的需要,对InnoDB锁机制的影响

MySQL通过BINLOG录执行成功的INSERT、UPDATE、DELETE等更新数据的SQL语句,并由此实现MySQL数据库的恢复和主从复制(可以参见本书“管理篇”的介绍)。MySQL的恢复机制(复制其实就是在Slave Mysql不断做基于BINLOG的恢复)有以下特点。

l 一是MySQL的恢复是SQL语句级的,也就是重新执行BINLOG中的SQL语句。这与Oracle数据库不同,Oracle是基于数据库文件块的。

l 二是MySQL的Binlog是按照事务提交的先后顺序记录的,恢复也是按这个顺序进行的。这点也与Oralce不同,Oracle是按照系统更新号(System Change Number,SCN)来恢复数据的,每个事务开始时,Oracle都会分配一个全局唯一的SCN,SCN的顺序与事务开始的时间顺序是一致的。

从上面两点可知,MySQL的恢复机制要求:在一个事务未提交前,其他并发事务不能插入满足其锁定条件的任何记录,也就是不允许出现幻读,这已经超过了ISO/ANSI SQL92“可重复读”隔离级别的要求,实际上是要求事务要串行化。这也是许多情况下,InnoDB要用到间隙锁的原因,比如在用范围条件更新记录时,无论在Read Commited或是Repeatable Read隔离级别下,InnoDB都要使用间隙锁,但这并不是隔离级别要求的,有关InnoDB在不同隔离级别下加锁的差异在下一小节还会介绍。

另外,对于“insert into target_tab select * from source_tab where ...”和“create table new_tab ...select ... From source_tab where ...(CTAS)”这种SQL语句,用户并没有对source_tab做任何更新操作,但MySQL对这种SQL语句做了特别处理。先来看如下表的例子。

CTAS操作给原表加锁例子

session_1 session_2 mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
|  4 | 1    |  1 |
|  5 | 1    |  1 |
|  6 | 1    |  1 |
|  7 | 1    |  1 |
|  8 | 1    |  1 |
+----+------+----+
5 rows in set (0.00 sec) mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
|  4 | 1    |  1 |
|  5 | 1    |  1 |
|  6 | 1    |  1 |
|  7 | 1    |  1 |
|  8 | 1    |  1 |
+----+------+----+
5 rows in set (0.00 sec) mysql> insert into target_tab select d1,name from source_tab where name = '1';
Query OK, 5 rows affected (0.00 sec)
Records: 5  Duplicates: 0  Warnings: 0 mysql> update source_tab set name = '1' where name = '8';

等待

commit;

返回结果

commit;

在上面的例子中,只是简单地读 source_tab表的数据,相当于执行一个普通的SELECT语句,用一致性读就可以了。ORACLE正是这么做的,它通过MVCC技术实现的多版本数据来实现一致性读,不需要给source_tab加任何锁。我们知道InnoDB也实现了多版本数据,对普通的SELECT一致性读,也不需要加任何锁;但这里InnoDB却给source_tab加了共享锁,并没有使用多版本数据一致性读技术!

MySQL为什么要这么做呢?其原因还是为了保证恢复和复制的正确性。因为不加锁的话,如果在上述语句执行过程中,其他事务对source_tab做了更新操作,就可能导致数据恢复的结果错误。为了演示这一点,我们再重复一下前面的例子,不同的是在session_1执行事务前,先将系统变量 innodb_locks_unsafe_for_binlog的值设置为“on”(其默认值为off),具体结果如下表所示。

CTAS操作不给原表加锁带来的安全问题例子

session_1 session_2 mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql>set innodb_locks_unsafe_for_binlog='on'
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
|  4 | 1    |  1 |
|  5 | 1    |  1 |
|  6 | 1    |  1 |
|  7 | 1    |  1 |
|  8 | 1    |  1 |
+----+------+----+
5 rows in set (0.00 sec) mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from target_tab;
Empty set (0.00 sec)
mysql> select * from source_tab where name = '1';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
|  4 | 1    |  1 |
|  5 | 1    |  1 |
|  6 | 1    |  1 |
|  7 | 1    |  1 |
|  8 | 1    |  1 |
+----+------+----+
5 rows in set (0.00 sec) mysql> insert into target_tab select d1,name from source_tab where name = '1';
Query OK, 5 rows affected (0.00 sec)
Records: 5  Duplicates: 0  Warnings: 0

session_1未提交,可以对session_1的select的记录进行更新操作。

mysql> update source_tab set name = '8' where name = '1';
Query OK, 5 rows affected (0.00 sec)
Rows matched: 5  Changed: 5  Warnings: 0
mysql> select * from source_tab where name = '8';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
|  4 | 8    |  1 |
|  5 | 8    |  1 |
|  6 | 8    |  1 |
|  7 | 8    |  1 |
|  8 | 8    |  1 |
+----+------+----+
5 rows in set (0.00 sec)

更新操作先提交

mysql> commit;
Query OK, 0 rows affected (0.05 sec)

插入操作后提交

mysql> commit;
Query OK, 0 rows affected (0.07 sec)

此时查看数据,target_tab中可以插入source_tab更新前的结果,这符合应用逻辑:

mysql> select * from source_tab where name = '8';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
|  4 | 8    |  1 |
|  5 | 8    |  1 |
|  6 | 8    |  1 |
|  7 | 8    |  1 |
|  8 | 8    |  1 |
+----+------+----+
5 rows in set (0.00 sec)
mysql> select * from target_tab;
+------+------+
| id   | name |
+------+------+
| 4    | 1.00 |
| 5    | 1.00 |
| 6    | 1.00 |
| 7    | 1.00 |
| 8    | 1.00 |
+------+------+
5 rows in set (0.00 sec) mysql> select * from tt1 where name = '1';
Empty set (0.00 sec)
mysql> select * from source_tab where name = '8';
+----+------+----+
| d1 | name | d2 |
+----+------+----+
|  4 | 8    |  1 |
|  5 | 8    |  1 |
|  6 | 8    |  1 |
|  7 | 8    |  1 |
|  8 | 8    |  1 |
+----+------+----+
5 rows in set (0.00 sec)
mysql> select * from target_tab;
+------+------+
| id   | name |
+------+------+
| 4    | 1.00 |
| 5    | 1.00 |
| 6    | 1.00 |
| 7    | 1.00 |
| 8    | 1.00 |
+------+------+
5 rows in set (0.00 sec)

从上可见,设置系统变量innodb_locks_unsafe_for_binlog的值为“on”后,InnoDB不再对source_tab加锁,结果也符合应用逻辑,但是如果分析BINLOG的内容:

......
SET TIMESTAMP=1169175130;
BEGIN;
# at 274
#070119 10:51:57 server id 1 end_log_pos 105 Query thread_id=1 exec_time=0 error_code=0
SET TIMESTAMP=1169175117;
update source_tab set name = '8' where name = '1';
# at 379
#070119 10:52:10 server id 1 end_log_pos 406 Xid = 5
COMMIT;
# at 406
#070119 10:52:14 server id 1 end_log_pos 474 Query thread_id=2 exec_time=0 error_code=0
SET TIMESTAMP=1169175134;
BEGIN;
# at 474
#070119 10:51:29 server id 1 end_log_pos 119 Query thread_id=2 exec_time=0 error_code=0
SET TIMESTAMP=1169175089;
insert into target_tab select d1,name from source_tab where name = '1';
# at 593
#070119 10:52:14 server id 1 end_log_pos 620 Xid = 7
COMMIT;
......

可以发现,在BINLOG中,更新操作的位置在INSERT...SELECT之前,如果使用这个BINLOG进行数据库恢复,恢复的结果与实际的应用逻辑不符;如果进行复制,就会导致主从数据库不一致!

通过上面的例子,我们就不难理解为什么MySQL在处理“Insert into target_tab select * from source_tab where ...”和“create table new_tab ...select ... From source_tab where ...”时要给source_tab加锁,而不是使用对并发影响最小的多版本数据来实现一致性读。还要特别说明的是,如果上述语句的SELECT是范围条件,InnoDB还会给源表加间隙锁(Next-Lock)。

因此,INSERT...SELECT...和 CREATE TABLE...SELECT...语句,可能会阻止对源表的并发更新,造成对源表锁的等待。如果查询比较复杂的话,会造成严重的性能问题,我们在应用中应尽量避免使用。实际上,MySQL将这种SQL叫作不确定(non-deterministic)的SQL,不推荐使用。

如果应用中一定要用这种SQL来实现业务逻辑,又不希望对源表的并发更新产生影响,可以采取以下两种措施:

  • 一是采取上面示例中的做法,将innodb_locks_unsafe_for_binlog的值设置为“on”,强制MySQL使用多版本数据一致性读。但付出的代价是可能无法用binlog正确地恢复或复制数据,因此,不推荐使用这种方式。

  • 二是通过使用“select * from source_tab ... Into outfile”和“load data infile ...”语句组合来间接实现,采用这种方式MySQL不会给source_tab加锁。

InnoDB在不同隔离级别下的一致性读及锁的差异

前面讲过,锁和多版本数据是InnoDB实现一致性读和ISO/ANSI SQL92隔离级别的手段,因此,在不同的隔离级别下,InnoDB处理SQL时采用的一致性读策略和需要的锁是不同的。同时,数据恢复和复制机制的特点,也对一些SQL的一致性读策略和锁策略有很大影响。将这些特性归纳成如下表所示的内容,以便读者查阅。

InnoDB存储引擎中不同SQL在不同隔离级别下锁比较

隔离级别

一致性读和锁

SQL

Read Uncommited Read Commited Repeatable Read Serializable SQL 条件 select 相等 None locks Consisten read/None lock Consisten read/None lock Share locks 范围 None locks Consisten read/None lock Consisten read/None lock Share Next-Key update 相等 exclusive locks exclusive locks exclusive locks Exclusive locks 范围 exclusive next-key exclusive next-key exclusive next-key exclusive next-key Insert N/A exclusive locks exclusive locks exclusive locks exclusive locks replace 无键冲突 exclusive locks exclusive locks exclusive locks exclusive locks 键冲突 exclusive next-key exclusive next-key exclusive next-key exclusive next-key delete 相等 exclusive locks exclusive locks exclusive locks exclusive locks 范围 exclusive next-key exclusive next-key exclusive next-key exclusive next-key Select ... from ... Lock in share mode 相等 Share locks Share locks Share locks Share locks 范围 Share locks Share locks Share Next-Key Share Next-Key Select * from ... For update 相等 exclusive locks exclusive locks exclusive locks exclusive locks 范围 exclusive locks Share locks exclusive next-key exclusive next-key

Insert into ... Select ...

(指源表锁)

innodb_locks_unsafe_for_binlog=off Share Next-Key Share Next-Key Share Next-Key Share Next-Key innodb_locks_unsafe_for_binlog=on None locks Consisten read/None lock Consisten read/None lock Share Next-Key

create table ... Select ...

(指源表锁)

innodb_locks_unsafe_for_binlog=off Share Next-Key Share Next-Key Share Next-Key Share Next-Key innodb_locks_unsafe_for_binlog=on None locks Consisten read/None lock Consisten read/None lock Share Next-Key

从上表可以看出:对于许多SQL,隔离级别越高,InnoDB给记录集加的锁就越严格(尤其是使用范围条件的时候),产生锁冲突的可能性也就越高,从而对并发性事务处理性能的影响也就越大。因此,我们在应用中,应该尽量使用较低的隔离级别,以减少锁争用的机率。实际上,通过优化事务逻辑,大部分应用使用Read Commited隔离级别就足够了。对于一些确实需要更高隔离级别的事务,可以通过在程序中执行SET SESSION TRANSACTION ISOLATION LEVEL REPEATABLE READ或SET SESSION TRANSACTION ISOLATION LEVEL SERIALIZABLE动态改变隔离级别的方式满足需求。

什么时候使用表锁

对于InnoDB表,在绝大部分情况下都应该使用行级锁,因为事务和行锁往往是我们之所以选择InnoDB表的理由。但在个别特殊事务中,也可以考虑使用表级锁。

  • 第一种情况是:事务需要更新大部分或全部数据,表又比较大,如果使用默认的行锁,不仅这个事务执行效率低,而且可能造成其他事务长时间锁等待和锁冲突,这种情况下可以考虑使用表锁来提高该事务的执行速度。

  • 第二种情况是:事务涉及多个表,比较复杂,很可能引起死锁,造成大量事务回滚。这种情况也可以考虑一次性锁定事务涉及的表,从而避免死锁、减少数据库因事务回滚带来的开销。

当然,应用中这两种事务不能太多,否则,就应该考虑使用MyISAM表了。

在InnoDB下,使用表锁要注意以下两点。

(1)使用LOCK TABLES虽然可以给InnoDB加表级锁,但必须说明的是,表锁不是由InnoDB存储引擎层管理的,而是由其上一层──MySQL Server负责的,仅当autocommit=0、innodb_table_locks=1(默认设置)时,InnoDB层才能知道MySQL加的表锁,MySQL Server也才能感知InnoDB加的行锁,这种情况下,InnoDB才能自动识别涉及表级锁的死锁;否则,InnoDB将无法自动检测并处理这种死锁。有关死锁,下一小节还会继续讨论。

(2)在用 LOCK TABLES对InnoDB表加锁时要注意,要将AUTOCOMMIT设为0,否则MySQL不会给表加锁;事务结束前,不要用UNLOCK TABLES释放表锁,因为UNLOCK TABLES会隐含地提交事务;COMMIT或ROLLBACK并不能释放用LOCK TABLES加的表级锁,必须用UNLOCK TABLES释放表锁。正确的方式见如下语句:

例如,如果需要写表t1并从表t读,可以按如下做:

SET AUTOCOMMIT=0;
LOCK TABLES t1 WRITE, t2 READ, ...;
[do something with tables t1 and t2 here];
COMMIT;
UNLOCK TABLES;

关于死锁

上文讲过,MyISAM表锁是deadlock free的,这是因为MyISAM总是一次获得所需的全部锁,要么全部满足,要么等待,因此不会出现死锁。但在InnoDB中,除单个SQL组成的事务外,锁是逐步获得的,这就决定了在InnoDB中发生死锁是可能的。如下所示的就是一个发生死锁的例子。

InnoDB存储引擎中的死锁例子

session_1 session_2 mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_1 where where id=1 for update;
...

做一些其他处理...

mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)
mysql> select * from table_2 where id=1 for update;
... select * from table_2 where id =1 for update;

因session_2已取得排他锁,等待

做一些其他处理... mysql> select * from table_1 where where id=1 for update;

死锁

在上面的例子中,两个事务都需要获得对方持有的排他锁才能继续完成事务,这种循环锁等待就是典型的死锁。

发生死锁后,InnoDB一般都能自动检测到,并使一个事务释放锁并回退,另一个事务获得锁,继续完成事务。但在涉及外部锁,或涉及表锁的情况下,InnoDB并不能完全自动检测到死锁,这需要通过设置锁等待超时参数 innodb_lock_wait_timeout来解决。需要说明的是,这个参数并不是只用来解决死锁问题,在并发访问比较高的情况下,如果大量事务因无法立即获得所需的锁而挂起,会占用大量计算机资源,造成严重性能问题,甚至拖跨数据库。我们通过设置合适的锁等待超时阈值,可以避免这种情况发生。

通常来说,死锁都是应用设计的问题,通过调整业务流程、数据库对象设计、事务大小,以及访问数据库的SQL语句,绝大部分死锁都可以避免。下面就通过实例来介绍几种避免死锁的常用方法。

(1)在应用中,如果不同的程序会并发存取多个表,应尽量约定以相同的顺序来访问表,这样可以大大降低产生死锁的机会。在下面的例子中,由于两个session访问两个表的顺序不同,发生死锁的机会就非常高!但如果以相同的顺序来访问,死锁就可以避免。

InnoDB存储引擎中表顺序造成的死锁例子

session_1 session_2 mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec) mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec) mysql> select first_name,last_name from actor where actor_id = 1 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| PENELOPE   | GUINESS   |
+------------+-----------+
1 row in set (0.00 sec) mysql> insert into country (country_id,country) values(110,'Test');
Query OK, 1 row affected (0.00 sec) mysql> insert into country (country_id,country) values(110,'Test');

等待

mysql> select first_name,last_name from actor where actor_id = 1 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| PENELOPE   | GUINESS   |
+------------+-----------+
1 row in set (0.00 sec) mysql>  insert into country (country_id,country) values(110,'Test');
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

(2)在程序以批量方式处理数据的时候,如果事先对数据排序,保证每个线程按固定的顺序来处理记录,也可以大大降低出现死锁的可能。

InnoDB存储引擎中表数据操作顺序不一致造成的死锁例子

session_1 session_2 mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec) mysql> set autocommit=0;
Query OK, 0 rows affected (0.00 sec) mysql> select first_name,last_name from actor where actor_id = 1 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| PENELOPE   | GUINESS   |
+------------+-----------+
1 row in set (0.00 sec) mysql> select first_name,last_name from actor where actor_id = 3 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| ED         | CHASE     |
+------------+-----------+
1 row in set (0.00 sec) mysql> select first_name,last_name from actor where actor_id = 3 for update;

等待

mysql> select first_name,last_name from actor where actor_id = 1 for update;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction
mysql> select first_name,last_name from actor where actor_id = 3 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| ED         | CHASE     |
+------------+-----------+
1 row in set (4.71 sec)

(3)在事务中,如果要更新记录,应该直接申请足够级别的锁,即排他锁,而不应先申请共享锁,更新时再申请排他锁,因为当用户申请排他锁时,其他事务可能又已经获得了相同记录的共享锁,从而造成锁冲突,甚至死锁。

(4)前面讲过,在REPEATABLE-READ隔离级别下,如果两个线程同时对相同条件记录用SELECT...FOR UPDATE加排他锁,在没有符合该条件记录情况下,两个线程都会加锁成功。程序发现记录尚不存在,就试图插入一条新记录,如果两个线程都这么做,就会出现死锁。这种情况下,将隔离级别改成READ COMMITTED,就可避免问题,如下所示。

InnoDB存储引擎中隔离级别引起的死锁例子1

session_1 session_2 mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation  |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec) mysql> select @@tx_isolation;
+-----------------+
| @@tx_isolation  |
+-----------------+
| REPEATABLE-READ |
+-----------------+
1 row in set (0.00 sec)
mysql> set autocommit = 0;
Query OK, 0 rows affected (0.00 sec)

当前session对不存在的记录加for update的锁:

mysql> insert into actor (actor_id , first_name , last_name) values(201,'Lisa','Tom');

其他session也可以对不存在的记录加for update的锁:

mysql> insert into actor (actor_id, first_name , last_name) values(201,'Lisa','Tom');
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

因为其他session也对该记录加了锁,所以当前的插入会等待:

mysql> insert into actor (actor_id , first_name , last_name) values(201,'Lisa','Tom');

等待

因为其他session已经对记录进行了更新,这时候再插入记录就会提示死锁并退出:

mysql> insert into actor (actor_id, first_name , last_name) values(201,'Lisa','Tom');
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

由于其他session已经退出,当前session可以获得锁并成功插入记录:

mysql> insert into actor (actor_id , first_name , last_name) values(201,'Lisa','Tom');
Query OK, 1 row affected (13.35 sec)

(5)当隔离级别为READ COMMITTED时,如果两个线程都先执行SELECT...FOR UPDATE,判断是否存在符合条件的记录,如果没有,就插入记录。此时,只有一个线程能插入成功,另一个线程会出现锁等待,当第1个线程提交后,第2个线程会因主键重出错,但虽然这个线程出错了,却会获得一个排他锁!这时如果有第3个线程又来申请排他锁,也会出现死锁。

对于这种情况,可以直接做插入操作,然后再捕获主键重异常,或者在遇到主键重错误时,总是执行ROLLBACK释放获得的排他锁,如下所示。

InnoDB存储引擎中隔离级别引起的死锁例子2

session_1 session_2 session_3 mysql> select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| READ-COMMITTED |
+----------------+
1 row in set (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.01 sec) mysql> select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| READ-COMMITTED |
+----------------+
1 row in set (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.01 sec) mysql> select @@tx_isolation;
+----------------+
| @@tx_isolation |
+----------------+
| READ-COMMITTED |
+----------------+
1 row in set (0.00 sec)
mysql> set autocommit=0;
Query OK, 0 rows affected (0.01 sec)

Session_1获得for update的共享锁:

mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;
Empty set (0.00 sec)

由于记录不存在,session_2也可以获得for update的共享锁:

mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;
Empty set (0.00 sec)

Session_1可以成功插入记录:

mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom');
Query OK, 1 row affected (0.00 sec)

Session_2插入申请等待获得锁:

mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom');

等待

Session_1成功提交:

mysql> commit;
Query OK, 0 rows affected (0.04 sec)

Session_2获得锁,发现插入记录主键重,这个时候抛出了异常,但是并没有释放共享锁:

mysql> insert into actor (actor_id,first_name,last_name) values(201,'Lisa','Tom');
ERROR 1062 (23000): Duplicate entry '201' for key 'PRIMARY'

Session_3申请获得共享锁,因为session_2已经锁定该记录,所以session_3需要等待:

mysql> select actor_id, first_name,last_name from actor where actor_id = 201 for update;

等待

这个时候,如果session_2直接对记录进行更新操作,则会抛出死锁的异常:

mysql> update actor set last_name='Lan' where actor_id = 201;
ERROR 1213 (40001): Deadlock found when trying to get lock; try restarting transaction

Session_2释放锁后,session_3获得锁:

mysql> select first_name, last_name from actor where actor_id = 201 for update;
+------------+-----------+
| first_name | last_name |
+------------+-----------+
| Lisa       | Tom       |
+------------+-----------+
1 row in set (31.12 sec)

尽管通过上面介绍的设计和SQL优化等措施,可以大大减少死锁,但死锁很难完全避免。因此,在程序设计中总是捕获并处理死锁异常是一个很好的编程习惯。

如果出现死锁,可以用SHOW INNODB STATUS命令来确定最后一个死锁产生的原因。返回结果中包括死锁相关事务的详细信息,如引发死锁的SQL语句,事务已经获得的锁,正在等待什么锁,以及被回滚的事务等。据此可以分析死锁产生的原因和改进措施。下面是一段SHOW INNODB STATUS输出的样例:

mysql> show innodb status \G
…….
------------------------
LATEST DETECTED DEADLOCK
------------------------
070710 14:05:16
*** (1) TRANSACTION:
TRANSACTION 0 117470078, ACTIVE 117 sec, process no 1468, OS thread id 1197328736 inserting
mysql tables in use 1, locked 1
LOCK WAIT 5 lock struct(s), heap size 1216
MySQL thread id 7521657, query id 673468054 localhost root update
insert into country (country_id,country) values(110,'Test')
………
*** (2) TRANSACTION:
TRANSACTION 0 117470079, ACTIVE 39 sec, process no 1468, OS thread id 1164048736 starting index read, thread declared inside InnoDB 500
mysql tables in use 1, locked 1
4 lock struct(s), heap size 1216, undo log entries 1
MySQL thread id 7521664, query id 673468058 localhost root statistics
select first_name,last_name from actor where actor_id = 1 for update
*** (2) HOLDS THE LOCK(S):
………
*** (2) WAITING FOR THIS LOCK TO BE GRANTED:
………
*** WE ROLL BACK TRANSACTION (1)
……

本文全面讲解了Mysql表锁,行锁,共享锁,排它锁,间隙锁的详细使用方法,希望对大家有所帮助

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。