DDR爱好者之家 Design By 杰米

前言

MySQL在2016年仍然保持强劲的数据库流行度增长趋势。越来越多的客户将自己的应用建立在MySQL数据库之上,甚至是从Oracle迁移到MySQL上来。但也存在部分客户在使用MySQL数据库的过程中遇到一些比如响应时间慢,CPU打满等情况。

阿里云RDS专家服务团队帮助云上客户解决过很多紧急问题。现将《ApsaraDB专家诊断报告》中出现的部分常见SQL问题总结如下,供大家参考。

1、LIMIT 语句

分页查询是最常用的场景之一,但也通常也是最容易出问题的地方。

比如对于下面简单的语句,一般 DBA 想到的办法是在 type, name, create_time 字段上加组合索引。这样条件排序都能有效的利用到索引,性能迅速提升。

SELECT * 
FROM operation 
WHERE type = 'SQLStats' 
  AND name = 'SlowLog' 
ORDER BY create_time 
LIMIT 1000, 10;

好吧,可能90%以上的 DBA 解决该问题就到此为止。

但当 LIMIT 子句变成 “LIMIT 1000000,10” 时,程序员仍然会抱怨:我只取10条记录为什么还是慢?

要知道数据库也并不知道第1000000条记录从什么地方开始,即使有索引也需要从头计算一次。出现这种性能问题,多数情形下是程序员偷懒了。

在前端数据浏览翻页,或者大数据分批导出等场景下,是可以将上一页的最大值当成参数作为查询条件的。SQL 重新设计如下:

SELECT * 
FROM  operation 
WHERE type = 'SQLStats' 
AND  name = 'SlowLog' 
AND  create_time > '2017-03-16 14:00:00' 
ORDER BY create_time limit 10;

在新设计下查询时间基本固定,不会随着数据量的增长而发生变化。

2、隐式转换

SQL语句中查询变量和字段定义类型不匹配是另一个常见的错误。比如下面的语句:

mysql> explain extended SELECT * 
  > FROM my_balance b 
  > WHERE b.bpn = 14000000123 
  >  AND b.isverified IS NULL ;
mysql> show warnings;
| Warning | 1739 | Cannot use ref access on index 'bpn' due to type or collation conversion on field 'bpn'

其中字段 bpn 的定义为 varchar(20),MySQL 的策略是将字符串转换为数字之后再比较。函数作用于表字段,索引失效。

上述情况可能是应用程序框架自动填入的参数,而不是程序员的原意。现在应用框架很多很繁杂,使用方便的同时也小心它可能给自己挖坑。

3、关联更新、删除

虽然 MySQL5.6 引入了物化特性,但需要特别注意它目前仅仅针对查询语句的优化。对于更新或删除需要手工重写成 JOIN。

比如下面 UPDATE 语句,MySQL 实际执行的是循环/嵌套子查询(DEPENDENT SUBQUERY),其执行时间可想而知。

UPDATE operation o 
SET status = 'applying' 
WHERE o.id IN (SELECT id 
    FROM (SELECT o.id, 
        o.status 
      FROM operation o 
      WHERE o.group = 123 
        AND o.status NOT IN ( 'done' ) 
      ORDER BY o.parent, 
         o.id 
      LIMIT 1) t);

执行计划:

+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| id | select_type  | table | type | possible_keys | key  | key_len | ref | rows | Extra            |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+
| 1 | PRIMARY   | o  | index |    | PRIMARY | 8  |  | 24 | Using where; Using temporary      |
| 2 | DEPENDENT SUBQUERY |  |  |    |   |   |  |  | Impossible WHERE noticed after reading const tables |
| 3 | DERIVED   | o  | ref | idx_2,idx_5 | idx_5 | 8  | const | 1 | Using where; Using filesort       |
+----+--------------------+-------+-------+---------------+---------+---------+-------+------+-----------------------------------------------------+

重写为 JOIN 之后,子查询的选择模式从 DEPENDENT SUBQUERY 变成 DERIVED,执行速度大大加快,从7秒降低到2毫秒。

UPDATE operation o 
  JOIN (SELECT o.id, 
       o.status 
      FROM operation o 
      WHERE o.group = 123 
       AND o.status NOT IN ( 'done' ) 
      ORDER BY o.parent, 
        o.id 
      LIMIT 1) t
   ON o.id = t.id 
SET status = 'applying' 

执行计划简化为

+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra            |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+
| 1 | PRIMARY  |  |  |    |  |   |  |  | Impossible WHERE noticed after reading const tables |
| 2 | DERIVED  | o  | ref | idx_2,idx_5 | idx_5 | 8  | const | 1 | Using where; Using filesort       |
+----+-------------+-------+------+---------------+-------+---------+-------+------+-----------------------------------------------------+

4、混合排序

MySQL 不能利用索引进行混合排序。但在某些场景,还是有机会使用特殊方法提升性能的。

SELECT * 
FROM my_order o 
  INNER JOIN my_appraise a ON a.orderid = o.id 
ORDER BY a.is_reply ASC, 
   a.appraise_time DESC 
LIMIT 0, 20 

执行计划显示为全表扫描:

+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| id | select_type | table | type | possible_keys  | key  | key_len | ref  | rows | Extra 
+----+-------------+-------+--------+-------------+---------+---------+---------------+---------+-+
| 1 | SIMPLE  | a  | ALL | idx_orderid | NULL | NULL | NULL | 1967647 | Using filesort |
| 1 | SIMPLE  | o  | eq_ref | PRIMARY  | PRIMARY | 122  | a.orderid |  1 | NULL   |
+----+-------------+-------+--------+---------+---------+---------+-----------------+---------+-+

由于 is_reply 只有0和1两种状态,我们按照下面的方法重写后,执行时间从1.58秒降低到2毫秒。

SELECT * 
FROM ((SELECT *
   FROM my_order o 
    INNER JOIN my_appraise a 
      ON a.orderid = o.id 
       AND is_reply = 0 
   ORDER BY appraise_time DESC 
   LIMIT 0, 20) 
  UNION ALL 
  (SELECT *
   FROM my_order o 
    INNER JOIN my_appraise a 
      ON a.orderid = o.id 
       AND is_reply = 1 
   ORDER BY appraise_time DESC 
   LIMIT 0, 20)) t 
ORDER BY is_reply ASC, 
   appraisetime DESC 
LIMIT 20;

5、EXISTS语句

MySQL 对待 EXISTS 子句时,仍然采用嵌套子查询的执行方式。如下面的 SQL 语句:

SELECT *
FROM my_neighbor n 
  LEFT JOIN my_neighbor_apply sra 
    ON n.id = sra.neighbor_id 
     AND sra.user_id = 'xxx' 
WHERE n.topic_status < 4 
  AND EXISTS(SELECT 1 
     FROM message_info m 
     WHERE n.id = m.neighbor_id 
       AND m.inuser = 'xxx') 
  AND n.topic_type <> 5 

执行计划为:

+----+--------------------+-------+------+-----+------------------------------------------+---------+-------+---------+ -----+
| id | select_type  | table | type | possible_keys  | key | key_len | ref | rows | Extra |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+
| 1 | PRIMARY   | n  | ALL | | NULL  | NULL | NULL | 1086041 | Using where     |
| 1 | PRIMARY   | sra | ref | | idx_user_id | 123  | const |  1 | Using where   |
| 2 | DEPENDENT SUBQUERY | m  | ref | | idx_message_info | 122  | const |  1 | Using index condition; Using where |
+----+--------------------+-------+------+ -----+------------------------------------------+---------+-------+---------+ -----+

去掉 exists 更改为 join,能够避免嵌套子查询,将执行时间从1.93秒降低为1毫秒。

SELECT *
FROM my_neighbor n 
  INNER JOIN message_info m 
    ON n.id = m.neighbor_id 
     AND m.inuser = 'xxx' 
  LEFT JOIN my_neighbor_apply sra 
    ON n.id = sra.neighbor_id 
     AND sra.user_id = 'xxx' 
WHERE n.topic_status < 4 
  AND n.topic_type <> 5 

新的执行计划:

+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| id | select_type | table | type | possible_keys  | key  | key_len | ref | rows | Extra     |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+
| 1 | SIMPLE  | m  | ref | | idx_message_info | 122  | const | 1 | Using index condition |
| 1 | SIMPLE  | n  | eq_ref | | PRIMARY | 122  | ighbor_id | 1 | Using where  |
| 1 | SIMPLE  | sra | ref | | idx_user_id | 123  | const  | 1 | Using where   |
+----+-------------+-------+--------+ -----+------------------------------------------+---------+ -----+------+ -----+

6、条件下推

外部查询条件不能够下推到复杂的视图或子查询的情况有:

  • 聚合子查询;
  • 含有 LIMIT 的子查询;
  • UNION 或 UNION ALL 子查询;
  • 输出字段中的子查询;

如下面的语句,从执行计划可以看出其条件作用于聚合子查询之后:

SELECT * 
FROM (SELECT target, 
    Count(*) 
  FROM operation 
  GROUP BY target) t 
WHERE target = 'rm-xxxx'
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
| id | select_type | table  | type | possible_keys | key   | key_len | ref | rows | Extra  |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+
|
1
| PRIMARY  |
 <derived2> 
| ref |
 <auto_key
0
> 
| <auto_key0> |
514
| const |
2
| Using where |
| 2 | DERIVED  | operation | index | idx_4   | idx_4  | 519  | NULL | 20 | Using index |
+----+-------------+------------+-------+---------------+-------------+---------+-------+------+-------------+

确定从语义上查询条件可以直接下推后,重写如下:

SELECT target, 
  Count(*) 
FROM operation 
WHERE target = 'rm-xxxx' 
GROUP BY target

执行计划变为:

+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| id | select_type | table | type | possible_keys | key | key_len | ref | rows | Extra |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+
| 1 | SIMPLE | operation | ref | idx_4 | idx_4 | 514 | const | 1 | Using where; Using index |
+----+-------------+-----------+------+---------------+-------+---------+-------+------+--------------------+

关于 MySQL 外部条件不能下推的详细解释说明请参考文章:http://mysql.taobao.org/monthly/2016/07/08

7、提前缩小范围

先上初始 SQL 语句:

SELECT * 
FROM  my_order o 
    LEFT JOIN my_userinfo u 
       ON o.uid = u.uid
    LEFT JOIN my_productinfo p 
       ON o.pid = p.pid 
WHERE ( o.display = 0 ) 
    AND ( o.ostaus = 1 ) 
ORDER BY o.selltime DESC 
LIMIT 0, 15 

该SQL语句原意是:先做一系列的左连接,然后排序取前15条记录。从执行计划也可以看出,最后一步估算排序记录数为90万,时间消耗为12秒。

+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| id | select_type | table | type  | possible_keys | key   | key_len | ref       | rows  | Extra                       |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+
| 1 | SIMPLE   | o   | ALL  | NULL     | NULL  | NULL  | NULL      | 909119 | Using where; Using temporary; Using filesort    |
| 1 | SIMPLE   | u   | eq_ref | PRIMARY    | PRIMARY | 4    | o.uid |   1 | NULL                        |
| 1 | SIMPLE   | p   | ALL  | PRIMARY    | NULL  | NULL  | NULL      |   6 | Using where; Using join buffer (Block Nested Loop) |
+----+-------------+-------+--------+---------------+---------+---------+-----------------+--------+----------------------------------------------------+

由于最后 WHERE 条件以及排序均针对最左主表,因此可以先对 my_order 排序提前缩小数据量再做左连接。SQL 重写后如下,执行时间缩小为1毫秒左右。

SELECT * 
FROM (
SELECT * 
FROM  my_order o 
WHERE ( o.display = 0 ) 
    AND ( o.ostaus = 1 ) 
ORDER BY o.selltime DESC 
LIMIT 0, 15
) o 
   LEFT JOIN my_userinfo u 
       ON o.uid = u.uid 
   LEFT JOIN my_productinfo p 
       ON o.pid = p.pid 
ORDER BY o.selltime DESC
limit 0, 15

再检查执行计划:子查询物化后(select_type=DERIVED)参与 JOIN。虽然估算行扫描仍然为90万,但是利用了索引以及 LIMIT 子句后,实际执行时间变得很小。

+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| id | select_type | table   | type  | possible_keys | key   | key_len | ref  | rows  | Extra                       |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+
| 1 | PRIMARY   | <derived2> | ALL  | NULL     | NULL  | NULL  | NULL |   15 | Using temporary; Using filesort          |
| 1 | PRIMARY   | u     | eq_ref | PRIMARY    | PRIMARY | 4    | o.uid |   1 | NULL                        |
| 1 | PRIMARY   | p     | ALL  | PRIMARY    | NULL  | NULL  | NULL |   6 | Using where; Using join buffer (Block Nested Loop) |
| 2 | DERIVED   | o     | index | NULL     | idx_1  | 5    | NULL | 909112 | Using where                    |
+----+-------------+------------+--------+---------------+---------+---------+-------+--------+----------------------------------------------------+

8、中间结果集下推

再来看下面这个已经初步优化过的例子(左连接中的主表优先作用查询条件):

SELECT  a.*, 
     c.allocated 
FROM   ( 
       SELECT  resourceid 
       FROM   my_distribute d 
          WHERE  isdelete = 0 
          AND   cusmanagercode = '1234567' 
          ORDER BY salecode limit 20) a 
LEFT JOIN 
     ( 
       SELECT  resourcesid, sum(ifnull(allocation, 0) * 12345) allocated 
       FROM   my_resources 
          GROUP BY resourcesid) c 
ON    a.resourceid = c.resourcesid

那么该语句还存在其它问题吗?不难看出子查询 c 是全表聚合查询,在表数量特别大的情况下会导致整个语句的性能下降。

其实对于子查询 c,左连接最后结果集只关心能和主表 resourceid 能匹配的数据。因此我们可以重写语句如下,执行时间从原来的2秒下降到2毫秒。

SELECT  a.*, 
     c.allocated 
FROM   ( 
          SELECT  resourceid 
          FROM   my_distribute d 
          WHERE  isdelete = 0 
          AND   cusmanagercode = '1234567' 
          ORDER BY salecode limit 20) a 
LEFT JOIN 
     ( 
          SELECT  resourcesid, sum(ifnull(allocation, 0) * 12345) allocated 
          FROM   my_resources r, 
              ( 
                   SELECT  resourceid 
                   FROM   my_distribute d 
                   WHERE  isdelete = 0 
                   AND   cusmanagercode = '1234567' 
                   ORDER BY salecode limit 20) a 
          WHERE  r.resourcesid = a.resourcesid 
          GROUP BY resourcesid) c 
ON    a.resourceid = c.resourcesid

但是子查询 a 在我们的SQL语句中出现了多次。这种写法不仅存在额外的开销,还使得整个语句显的繁杂。使用 WITH 语句再次重写:

WITH a AS 
( 
     SELECT  resourceid 
     FROM   my_distribute d 
     WHERE  isdelete = 0 
     AND   cusmanagercode = '1234567' 
     ORDER BY salecode limit 20)
SELECT  a.*, 
     c.allocated 
FROM   a 
LEFT JOIN 
     ( 
          SELECT  resourcesid, sum(ifnull(allocation, 0) * 12345) allocated 
          FROM   my_resources r, 
              a 
          WHERE  r.resourcesid = a.resourcesid 
          GROUP BY resourcesid) c 
ON    a.resourceid = c.resourcesid

总结

数据库编译器产生执行计划,决定着SQL的实际执行方式。但是编译器只是尽力服务,所有数据库的编译器都不是尽善尽美的。

上述提到的多数场景,在其它数据库中也存在性能问题。了解数据库编译器的特性,才能避规其短处,写出高性能的SQL语句。

程序员在设计数据模型以及编写SQL语句时,要把算法的思想或意识带进来。

编写复杂SQL语句要养成使用 WITH 语句的习惯。简洁且思路清晰的SQL语句也能减小数据库的负担 。

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线

暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。

艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。

《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。