本文实例讲述了python通过BF算法实现关键词匹配的方法。分享给大家供大家参考。具体实现方法如下:
复制代码 代码如下:#!/usr/bin/python
# -*- coding: UTF-8
# filename BF
import time
"""
t="this is a big apple,this is a big apple,this is a big apple,this is a big apple."
p="apple"
"""
t="为什么叫向量空间模型呢?其实我们可以把每个词给看成一个维度,而词的频率看成其值(有向),即向量,这样每篇文章的词及其频率就构成了一个i维空间图,两个文档的相似度就是两个空间图的接近度。假设文章只有两维的话,那么空间图就可以画在一个平面直角坐标系当中,读者可以假想两篇只有两个词的文章画图进行理解。"
p="读者"
i=0
count=0
start=time.time()
while (i <=len(t)-len(p)):
j=0
while (t[i]==p[j]):
i=i+1
j=j+1
if j==len(p):
break
elif (j==len(p)-1):
count=count+1
else:
i=i+1
j=0
print count
print time.time()-start
算法思想:目标串t与模式串p逐词比较,若对应位匹配,则进行下一位比较;若不相同,p右移1位,从p的第1位重新开始比较。
算法特点:整体移动方向:可认为在固定的情况下,p从左向右滑动;匹配比较时,从p的最左边位开始向右逐位与t串中对应位比较。p的滑动距离为1,这导致BF算法匹配效率低(相比其他算法,如:BM,KMP,滑动没有跳跃)。
该算法的时间复杂度为O(len(t)*len(p)),空间复杂度为O(len(t)+len(p))
希望本文所述对大家的Python程序设计有所帮助。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]