一个功能的实现,可以用多种语句来实现,比如说:while语句、for语句、生成器、列表推导、内置函数等实现,然而他们的效率并不一样。写了一个小程序来测试它们执行的效率。
测试内容:
将一个数字大小为20万的数字,依次取绝对值,放到列表中,测试重复1千次.
测试程序:
复制代码 代码如下:
import time,sys
reps = 1000 #测试重复次数
nums = 200000 #测试时数字大小
def tester(func,*args): #总体测试函数
startTime = time.time()
for i in range(reps):
func(*args)
elapsed = time.time() - startTime #用time模块来测试,结束时间与开始时间差
return elapsed
def while_Statement(): #while循环实现
res = []
x = 0
while nums > x:
x += 1
res.append(abs(x))
def for_Statement(): #for循环实现
res = []
for x in range(nums):
res.append(abs(x))
def generator_Expression():#生成器实现
res = list(abs(x) for x in range(nums))
def list_Comprehension(): #列表解析实现
res = [abs(x) for x in range(nums)]
def map_Function(): #内置函数map实现
res = map(abs, range(nums))
print sys.version #打印系统版本
tests = [while_Statement, for_Statement, generator_Expression, list_Comprehension, map_Function]
for testfunc in tests: #将待测函数放置列表中依次遍历
print testfunc.__name__.ljust(20),': ',tester(testfunc) #
测试结果:
复制代码 代码如下:
>
2.7.4 (default, Apr 6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)]
while_Statement : 84.5769999027
for_Statement : 75.2709999084
generator_Expression : 62.3519999981
list_Comprehension : 60.4090001583
map_Function : 47.5629999638
改写程序:
复制代码 代码如下:
import sys
nums = 100
def while_Statement():
res = []
x = 0
while nums > x:
x += 1
res.append(abs(x))
def for_Statement():
res = []
for x in range(nums):
res.append(abs(x))
def generator_Expression():
res = list(abs(x) for x in range(nums))
def list_Comprehension():
res = [abs(x) for x in range(nums)]
def map_Function():
res = map(abs, range(nums))
if __name__=='__main__':
import timeit #用timeit模块来测试
print sys.version
funcs = [while_Statement, for_Statement, generator_Expression, list_Comprehension, map_Function]
for func in funcs:
print func.__name__.ljust(20),': ',timeit.timeit("func()", setup="from __main__ import func")
测试结果:
复制代码 代码如下:
>
2.7.4 (default, Apr 6 2013, 19:55:15) [MSC v.1500 64 bit (AMD64)]
while_Statement : 37.1800067428
for_Statement : 30.3999109329
generator_Expression : 27.2597866441
list_Comprehension : 17.386223449
map_Function : 12.7386868963
测试分析:
用time模块,和timeit模块两种测试方式测试了很多组数字,得出的结果是执行内置函数最快,其次就是列表推导,再其次生成器和for循环,while循环最慢。一般最快的使用内置函数的方法要比使用最慢的while快两倍以上。简单分析下原因:内置函数比如说map,filter,reduce(在Python3.0中移除)基本上都是用C语言来实现的,所以速度是最快的,列表推导内的迭代在解释器内是以C语言的速度运行的(一般是for循环的两倍,对大型文件操作而言,用列表推导效果尤其明显),相比较for循环代码是在PVM步进运行要快的多。但for循环里面含range(),相对速度也会快些,while语句是纯粹用Python代码写成,所以速度最慢。所以函数式编程最好使用内置函数,然后才考虑使用列表推导或for循环。最好不用while循环.
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]