前言
Python为我们提供了4种基本的数据结构:list, tuple, dict, set,但是在处理数据量较大的情形的时候,这4种数据结构就明显过于单一了,比如list作为数组在某些情形插入的效率会比较低,有时候我们也需要维护一个有序的dict。所以这个时候我们就要用到Python标准库为我们提供的collections包了,它提供了多个有用的集合类,熟练掌握这些集合类,不仅可以让我们让写出的代码更加Pythonic,也可以提高我们程序的运行效率。
defaultdict
defaultdict(default_factory)
在普通的dict之上添加了default_factory,使得key不存在时会自动生成相应类型的value,default_factory参数可以指定成list, set, int等各种合法类型。
我们现在有下面这样一组list,虽然我们有5组数据,但是仔细观察后发现其实我们只有3种color,但是每一种color对应多个值。现在我们想要将这个list转换成一个dict,这个dict的key对应一种color,dict的value设置为一个list存放color对应的多个值。我们可以使用defaultdict(list)
来解决这个问题。
> from collections import defaultdict > s = [('yellow', 1), ('blue', 2), ('yellow', 3), ('blue', 4), ('red', 1)] > d = defaultdict(list) > for k, v in s: ... d[k].append(v) ... > sorted(d.items()) [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
以上等价于:
> d = {} > for k, v in s: ... d.setdefault(k, []).append(v) ... > sorted(d.items()) [('blue', [2, 4]), ('red', [1]), ('yellow', [1, 3])]
如果我们不希望含有重复的元素,可以考虑使用defaultdict(set)
。set相比list的不同之处在于set中不允许存在相同的元素。
> from collections import defaultdict > s = [('red', 1), ('blue', 2), ('red', 3), ('blue', 4), ('red', 1), ('blue', 4)] > d = defaultdict(set) > for k, v in s: ... d[k].add(v) ... > sorted(d.items()) [('blue', {2, 4}), ('red', {1, 3})]
OrderedDict
Python3.6之前的dict是无序的,但是在某些情形我们需要保持dict的有序性,这个时候可以使用OrderedDict,它是dict的一个subclass,但是在dict的基础上保持了dict的有序型,下面我们来看一下使用方法。
> # regular unsorted dictionary > d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2} > # dictionary sorted by key > OrderedDict(sorted(d.items(), key=lambda t: t[0])) OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)]) > # dictionary sorted by value > OrderedDict(sorted(d.items(), key=lambda t: t[1])) OrderedDict([('pear', 1), ('orange', 2), ('banana', 3), ('apple', 4)]) > # dictionary sorted by length of the key string > OrderedDict(sorted(d.items(), key=lambda t: len(t[0]))) OrderedDict([('pear', 1), ('apple', 4), ('orange', 2), ('banana', 3)])
使用popitem(last=True)
方法可以让我们按照LIFO(先进后出)的顺序删除dict中的key-value,即删除最后一个插入的键值对,如果last=False就按照FIFO(先进先出)删除dict中key-value。
> d = {'banana': 3, 'apple': 4, 'pear': 1, 'orange': 2} > # dictionary sorted by key > d = OrderedDict(sorted(d.items(), key=lambda t: t[0])) > d OrderedDict([('apple', 4), ('banana', 3), ('orange', 2), ('pear', 1)]) > d.popitem() ('pear', 1) > d.popitem(last=False) ('apple', 4)
使用move_to_end(key, last=True)
来改变有序的OrderedDict对象的key-value顺序,通过这个方法我们可以将排序好的OrderedDict对象中的任意一个key-value插入到字典的开头或者结尾。
> d = OrderedDict.fromkeys('abcde') > d OrderedDict([('a', None), ('b', None), ('c', None), ('d', None), ('e', None)]) > d.move_to_end('b') > d OrderedDict([('a', None), ('c', None), ('d', None), ('e', None), ('b', None)]) > ''.join(d.keys()) 'acdeb' > d.move_to_end('b', last=False) > ''.join(d.keys()) 'bacde'
deque
list存储数据的优势在于按索引查找元素会很快,但是插入和删除元素就很慢了,因为list是基于数组实现的。deque是为了高效实现插入和删除操作的双向列表,适合用于队列和栈,而且线程安全。
list只提供了append和pop方法来从list的尾部插入/删除元素,deque新增了appendleft/popleft等方法允许我们高效的在元素的开头来插入/删除元素。而且使用deque在队列两端append或pop元素的算法复杂度大约是O(1),但是对于list对象改变列表长度和数据位置的操作例如 pop(0)
和insert(0, v)
操作的复杂度高达O(n)。
> from collections import deque > dq = deque(range(10), maxlen=10) > dq deque([0, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10) > dq.rotate(3) > dq deque([7, 8, 9, 0, 1, 2, 3, 4, 5, 6], maxlen=10) > dq.rotate(-4) > dq deque([1, 2, 3, 4, 5, 6, 7, 8, 9, 0], maxlen=10) > dq.appendleft(-1) > dq deque([-1, 1, 2, 3, 4, 5, 6, 7, 8, 9], maxlen=10) > dq.extend([11, 22, 33]) > dq deque([3, 4, 5, 6, 7, 8, 9, 11, 22, 33], maxlen=10) > dq.extendleft([10, 20, 30, 40]) > dq deque([40, 30, 20, 10, 3, 4, 5, 6, 7, 8], maxlen=10)
Counter
Count用来统计相关元素的出现次数。
> from collections import Counter > ct = Counter('abracadabra') > ct Counter({'a': 5, 'r': 2, 'b': 2, 'd': 1, 'c': 1}) > ct.update('aaaaazzz') > ct Counter({'a': 10, 'z': 3, 'r': 2, 'b': 2, 'd': 1, 'c': 1}) > ct.most_common(2) [('a', 10), ('z', 3)] > ct.elements() <itertools.chain object at 0x7fbaad4b44e0>
namedtuple
使用namedtuple(typename, field_names)
命名tuple中的元素来使程序更具可读性。
> from collections import namedtuple > City = namedtuple('City', 'name country population coordinates') > tokyo = City('Tokyo', 'JP', 36.933, (35.689722, 139.691667)) > tokyo City(name='Tokyo', country='JP', population=36.933, coordinates=(35.689722, 139.691667)) > tokyo.population 36.933 > tokyo.coordinates (35.689722, 139.691667) > tokyo[1] 'JP'
> City._fields ('name', 'country', 'population', 'coordinates') > LatLong = namedtuple('LatLong', 'lat long') > delhi_data = ('Delhi NCR', 'IN', 21.935, LatLong(28.613889, 77.208889)) > delhi = City._make(delhi_data) > delhi._asdict() OrderedDict([('name', 'Delhi NCR'), ('country', 'IN'), ('population', 21.935), ('coordinates', LatLong(lat=28.613889, long=77.208889))]) > for key, value in delhi._asdict().items(): print(key + ':', value) name: Delhi NCR country: IN population: 21.935 coordinates: LatLong(lat=28.613889, long=77.208889)
ChainMap
ChainMap可以用来合并多个字典。
> from collections import ChainMap > d = ChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'}) > d['lion'] = 'orange' > d['snake'] = 'red' > d ChainMap({'lion': 'orange', 'zebra': 'black', 'snake': 'red'}, {'elephant': 'blue'}, {'lion': 'yellow'})
> del d['lion'] > del d['elephant'] Traceback (most recent call last): File "/usr/lib/python3.5/collections/__init__.py", line 929, in __delitem__ del self.maps[0][key] KeyError: 'elephant' During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/usr/lib/python3.5/collections/__init__.py", line 931, in __delitem__ raise KeyError('Key not found in the first mapping: {!r}'.format(key)) KeyError: "Key not found in the first mapping: 'elephant'"
从上面del['elephant']
的报错信息可以看出来,对于改变键值的操作ChainMap只会在第一个字典self.maps[0][key]
进行查找,新增加的键值对也都会加入第一个字典,我们来改进一下ChainMap解决这个问题:
class DeepChainMap(ChainMap): 'Variant of ChainMap that allows direct updates to inner scopes' def __setitem__(self, key, value): for mapping in self.maps: if key in mapping: mapping[key] = value return self.maps[0][key] = value def __delitem__(self, key): for mapping in self.maps: if key in mapping: del mapping[key] return raise KeyError(key) > d = DeepChainMap({'zebra': 'black'}, {'elephant': 'blue'}, {'lion': 'yellow'}) > d['lion'] = 'orange' # update an existing key two levels down > d['snake'] = 'red' # new keys get added to the topmost dict > del d['elephant'] # remove an existing key one level down DeepChainMap({'zebra': 'black', 'snake': 'red'}, {}, {'lion': 'orange'})
可以使用new_child来deepcopy一个ChainMap:
> from collections import ChainMap > a = {'a': 'A', 'c': 'C'} > b = {'b': 'B', 'c': 'D'} > m = ChainMap({'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'}) > m ChainMap({'a': 'A', 'c': 'C'}, {'b': 'B', 'c': 'D'}) > m['c'] 'C' > m.maps [{'c': 'C', 'a': 'A'}, {'c': 'D', 'b': 'B'}] > a['c'] = 'E' > m['c'] 'E' > m ChainMap({'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'})
> m2 = m.new_child() > m2['c'] = 'f' > m2 ChainMap({'c': 'f'}, {'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'}) > m ChainMap({'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'}) > m2.parents ChainMap({'c': 'E', 'a': 'A'}, {'c': 'D', 'b': 'B'})
UserDict
下面我们来改进一下字典,查询字典的时候将key转换为str的形式:
class StrKeyDict0(dict): def __missing__(self, key): if isinstance(key, str): raise KeyError(key) return self[str(key)] def get(self, key, default=None): try: return self[key] except KeyError: return default def __contains__(self, key): return key in self.keys() or str(key) in self.keys()
解释一下上面这段程序:
- 在__missing__中isinstance(key, str)是必须要的,请思考一下为什么? 因为假设一个key不存在的话,这会造成infinite recursion,self[str(key)]会再次调用__getitem__。
- __contains__也是必须实现的,因为k in d的时候会进行调用,但是注意即使查找失败它也不会调用__missing__。关于__contains__还有一个细节就是:我们并没有使用
k in my_dict
,因为str(key) in self
的形式,因为这会造成递归调用__contains__。
这里还强调一点,在Python2.x中dict.keys()会返回一个list,这意味着k in my_list必须遍历list。在Python3.x中针对dict.keys()做了优化,性能更高,它会返回一个view如同set一样,详情参考官方文档。
上面这个例子可以用UserDict改写,并且将所有的key都以str的形式存储,而且这种写法更加常用简洁:
import collections class StrKeyDict(collections.UserDict): def __missing__(self, key): if isinstance(key, str): raise KeyError(key) return self[str(key)] def __contains__(self, key): return str(key) in self.data def __setitem__(self, key, item): self.data[str(key)] = item
UserDict是MutableMapping和Mapping的子类,它继承了MutableMapping.update和Mapping.get两个重要的方法,所以上面我们并没有重写get方法,可以在源码中看到它的实现和我们上面的实现是差不多的。
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对的支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]