DDR爱好者之家 Design By 杰米
本文实现的原理很简单,优化方法是用的梯度下降。后面有测试结果。
先来看看实现的示例代码:
# coding=utf-8 from math import exp import matplotlib.pyplot as plt import numpy as np from sklearn.datasets.samples_generator import make_blobs def sigmoid(num): ''' :param num: 待计算的x :return: sigmoid之后的数值 ''' if type(num) == int or type(num) == float: return 1.0 / (1 + exp(-1 * num)) else: raise ValueError, 'only int or float data can compute sigmoid' class logistic(): def __init__(self, x, y): if type(x) == type(y) == list: self.x = np.array(x) self.y = np.array(y) elif type(x) == type(y) == np.ndarray: self.x = x self.y = y else: raise ValueError, 'input data error' def sigmoid(self, x): ''' :param x: 输入向量 :return: 对输入向量整体进行simgoid计算后的向量结果 ''' s = np.frompyfunc(lambda x: sigmoid(x), 1, 1) return s(x) def train_with_punish(self, alpha, errors, punish=0.0001): ''' :param alpha: alpha为学习速率 :param errors: 误差小于多少时停止迭代的阈值 :param punish: 惩罚系数 :param times: 最大迭代次数 :return: ''' self.punish = punish dimension = self.x.shape[1] self.theta = np.random.random(dimension) compute_error = 100000000 times = 0 while compute_error > errors: res = np.dot(self.x, self.theta) delta = self.sigmoid(res) - self.y self.theta = self.theta - alpha * np.dot(self.x.T, delta) - punish * self.theta # 带惩罚的梯度下降方法 compute_error = np.sum(delta) times += 1 def predict(self, x): ''' :param x: 给入新的未标注的向量 :return: 按照计算出的参数返回判定的类别 ''' x = np.array(x) if self.sigmoid(np.dot(x, self.theta)) > 0.5: return 1 else: return 0 def test1(): ''' 用来进行测试和画图,展现效果 :return: ''' x, y = make_blobs(n_samples=200, centers=2, n_features=2, random_state=0, center_box=(10, 20)) x1 = [] y1 = [] x2 = [] y2 = [] for i in range(len(y)): if y[i] == 0: x1.append(x[i][0]) y1.append(x[i][1]) elif y[i] == 1: x2.append(x[i][0]) y2.append(x[i][1]) # 以上均为处理数据,生成出两类数据 p = logistic(x, y) p.train_with_punish(alpha=0.00001, errors=0.005, punish=0.01) # 步长是0.00001,最大允许误差是0.005,惩罚系数是0.01 x_test = np.arange(10, 20, 0.01) y_test = (-1 * p.theta[0] / p.theta[1]) * x_test plt.plot(x_test, y_test, c='g', label='logistic_line') plt.scatter(x1, y1, c='r', label='positive') plt.scatter(x2, y2, c='b', label='negative') plt.legend(loc=2) plt.title('punish value = ' + p.punish.__str__()) plt.show() if __name__ == '__main__': test1()
运行结果如下图
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作能带来一定的帮助,如果有疑问大家可以留言交流,谢谢大家对的支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]