本文实例讲述了Python分治法定义与应用。分享给大家供大家参考,具体如下:
分治法所能解决的问题一般具有以下几个特征:
1) 该问题的规模缩小到一定的程度就可以容易地解决
2) 该问题可以分解为若干个规模较小的相同问题,即该问题具有最优子结构性质。
3) 利用该问题分解出的子问题的解可以合并为该问题的解;
4) 该问题所分解出的各个子问题是相互独立的,即子问题之间不包含公共的子子问题。
第一条特征是绝大多数问题都可以满足的,因为问题的计算复杂性一般是随着问题规模的增加而增加;
第二条特征是应用分治法的前提它也是大多数问题可以满足的,此特征反映了递归思想的应用;
第三条特征是关键,能否利用分治法完全取决于问题是否具有第三条特征,如果具备了第一条和第二条特征,而不具备第三条特征,则可以考虑用贪心法或动态规划法。
第四条特征涉及到分治法的效率,如果各子问题是不独立的则分治法要做许多不必要的工作,重复地解公共的子问题,此时虽然可用分治法,但一般用动态规划法较好。
题目1. 给定一个顺序表,编写一个求出其最大值的分治算法。
# 基本子算法(子问题规模小于等于 2 时) def get_max(max_list): return max(max_list) # 这里偷个懒! # 分治法 版本一 def solve(init_list): n = len(init_list) if n <= 2: # 若问题规模小于等于 2,最终解决 return get_max(init_list) # 分解(子问题规模为 2,最后一个可能为 1) temp_list=(init_list[i:i+2] for i in range(0, n, 2)) # 分治,合并 max_list = list(map(get_max, temp_list)) # 递归(树) solve(max_list) # 分治法 版本二 def solve2(init_list): n = len(init_list) if n <= 2: # 若问题规模小于等于 2,解决 return get_max(init_list) # 分解(子问题规模为 n/2) left_list, right_list = init_list[:n//2], init_list[n//2:] # 递归(树),分治 left_max, right_max = solve2(left_list), solve2(right_list) # 合并 return get_max([left_max, right_max]) if __name__ == "__main__": # 测试数据 test_list = [12,2,23,45,67,3,2,4,45,63,24,23] # 求最大值 print(solve(test_list)) # 67 print(solve2(test_list)) # 67
题目2. 给定一个顺序表,判断某个元素是否在其中。
# 子问题算法(子问题规模为 1) def is_in_list(init_list, el): return [False, True][init_list[0] == el] # 分治法 def solve(init_list, el): n = len(init_list) if n == 1: # 若问题规模等于 1,直接解决 return is_in_list(init_list, el) # 分解(子问题规模为 n/2) left_list, right_list = init_list[:n//2], init_list[n//2:] # 递归(树),分治,合并 res = solve(left_list, el) or solve(right_list, el) return res if __name__ == "__main__": # 测试数据 test_list = [12,2,23,45,67,3,2,4,45,63,24,23] # 查找 print(solve2(test_list, 45)) # True print(solve2(test_list, 5)) # False
题目3. 找出一组序列中的第 k 小的元素,要求线性时间
# 划分(基于主元 pivot),注意:非就地划分 def partition(seq): pi = seq[0] # 挑选主元 lo = [x for x in seq[1:] if x <= pi] # 所有小的元素 hi = [x for x in seq[1:] if x > pi] # 所有大的元素 return lo, pi, hi # 查找第 k 小的元素 def select(seq, k): # 分解 lo, pi, hi = partition(seq) m = len(lo) if m == k: return pi # 解决! elif m < k: return select(hi, k-m-1) # 递归(树),分治 else: return select(lo, k) # 递归(树),分治 if __name__ == '__main__': seq = [3, 4, 1, 6, 3, 7, 9, 13, 93, 0, 100, 1, 2, 2, 3, 3, 2] print(select(seq, 3)) #2 print(select(seq, 5)) #2
题目4. 快速排序
# 划分(基于主元 pivot),注意:非就地划分 def partition(seq): pi = seq[0] # 挑选主元 lo = [x for x in seq[1:] if x <= pi] # 所有小的元素 hi = [x for x in seq[1:] if x > pi] # 所有大的元素 return lo, pi, hi # 快速排序 def quicksort(seq): # 若问题规模小于等于1,解决 if len(seq) <= 1: return seq # 分解 lo, pi, hi = partition(seq) # 递归(树),分治,合并 return quicksort(lo) + [pi] + quicksort(hi) seq = [7, 5, 0, 6, 3, 4, 1, 9, 8, 2] print(quicksort(seq)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
题目5. 合并排序(二分排序)
# 合并排序 def mergesort(seq): # 分解(基于中点) mid = len(seq) // 2 left_seq, right_seq = seq[:mid], seq[mid:] # 递归(树),分治 if len(left_seq) > 1: left_seq = mergesort(left_seq) if len(right_seq) > 1: right_seq = mergesort(right_seq) # 合并 res = [] while left_seq and right_seq: # 只要两者皆非空 if left_seq[-1] >= right_seq[-1]: # 两者尾部较大者,弹出 res.append(left_seq.pop()) else: res.append(right_seq.pop()) res.reverse() # 倒序 return (left_seq or right_seq) + res # 前面加上剩下的非空的seq seq = [7, 5, 0, 6, 3, 4, 1, 9, 8, 2] print(mergesort(seq)) #[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
题目6. 汉诺塔
# 汉诺塔 def move(n, a, buffer, c): if n == 1: print(a,"->",c) #return else: # 递归(线性) move(n-1, a, c, buffer) move(1, a, buffer, c) # 或者:print(a,"->",c) move(n-1, buffer, a, c) move(3, "a", "b", "c")
问题7. 爬楼梯
假设你正在爬楼梯,需要n步你才能到达顶部。但每次你只能爬一步或者两步,你能有多少种不同的方法爬到楼顶部?
# 爬楼梯 def climb(n=7): if n <= 2: return n return climb(n-1) + climb(n-2) # 等价于斐波那契数列! print(climb(5)) # 8 print(climb(7)) # 21
问题8. 给定平面上n个点,找其中的一对点,使得在n个点的所有点对中,该点对的距离最小。(最近点对问题)
from math import sqrt # 蛮力法 def solve(points): n = len(points) min_d = float("inf") # 最小距离:无穷大 min_ps = None # 最近点对 for i in range(n-1): for j in range(i+1, n): d = sqrt((points[i][0] - points[j][0])**2 + (points[i][1] - points[j][1])**2) # 两点距离 if d < min_d: min_d = d # 修改最小距离 min_ps = [points[i], points[j]] # 保存最近点对 return min_ps # 最接近点对(报错!) def nearest_dot(seq): # 注意:seq事先已对x坐标排序 n = len(seq) if n <= 2: return seq # 若问题规模等于 2,直接解决 # 分解(子问题规模n/2) left, right = seq[0:n//2], seq[n//2:] print(left, right) mid_x = (left[-1][0] + right[0][0])/2.0 # 递归,分治 lmin = (left, nearest_dot(left))[len(left) > 2] # 左侧最近点对 rmin = (right, nearest_dot(right))[len(right) > 2] # 右侧最近点对 # 合并 dis_l = (float("inf"), get_distance(lmin))[len(lmin) > 1] dis_r = (float("inf"), get_distance(rmin))[len(rmin) > 1] d = min(dis_l, dis_r) # 最近点对距离 # 处理中线附近的带状区域(近似蛮力) left = list(filter(lambda p:mid_x - p[0] <= d, left)) #中间线左侧的距离<=d的点 right = list(filter(lambda p:p[0] - mid_x <= d, right)) #中间线右侧的距离<=d的点 mid_min = [] for p in left: for q in right: if abs(p[0]-q[0])<=d and abs(p[1]-q[1]) <= d: #如果右侧部分点在p点的(d,2d)之间 td = get_distance((p,q)) if td <= d: mid_min = [p,q] # 记录p,q点对 d = td # 修改最小距离 if mid_min: return mid_min elif dis_l>dis_r: return rmin else: return lmin # 两点距离 def get_distance(min): return sqrt((min[0][0]-min[1][0])**2 + (min[0][1]-min[1][1])**2) def divide_conquer(seq): seq.sort(key=lambda x:x[0]) res = nearest_dot(seq) return res # 测试 seq=[(0,1),(3,2),(4,3),(5,1),(1,2),(2,1),(6,2),(7,2),(8,3),(4,5),(9,0),(6,4)] print(solve(seq)) # [(6, 2), (7, 2)] #print(divide_conquer(seq)) # [(6, 2), (7, 2)]
问题9. 从数组 seq 中找出和为 s 的数值组合,有多少种可能
''' 求一个算法:N个数,用其中M个任意组合相加等于一个已知数X。得出这M个数是哪些数。 比如: seq = [1, 2, 3, 4, 5, 6, 7, 8, 9] s = 14 # 和 全部可能的数字组合有: 5+9, 6+8 1+4+9, 1+5+8, 1+6+7, 2+3+9, 2+4+8, 2+5+7, 3+4+7, 3+5+6 1+2+5+6, 1+3+4+6, 1+2+4+7, 1+2+3+8, 2+3+4+5 共计15种 ''' # 版本一(纯计数) def find(seq, s): n = len(seq) if n==1: return [0, 1][seq[0]==s] if seq[0]==s: return 1 + find(seq[1:], s) else: return find(seq[1:], s-seq[0]) + find(seq[1:], s) # 测试 seq = [1, 2, 3, 4, 5, 6, 7, 8, 9] s = 14 # 和 print(find(seq, s)) # 15 seq = [11,23,6,31,8,9,15,20,24,14] s = 40 # 和 print(find(seq, s)) #8 # 版本二 (打印) def find2(seq, s, tmp=''): if len(seq)==0: # 终止条件 return if seq[0] == s: # 找到一种,则 print(tmp + str(seq[0])) # 打印 find2(seq[1:], s, tmp) # 尾递归 ---不含 seq[0] 的情况 find2(seq[1:], s-seq[0], str(seq[0]) + '+' + tmp) # 尾递归 ---含 seq[0] 的情况 # 测试 seq = [1, 2, 3, 4, 5, 6, 7, 8, 9] s = 14 # 和 find2(seq, s) print() seq = [11,23,6,31,8,9,15,20,24,14] s = 40 # 和 find2(seq, s)
更多关于Python相关内容可查看本站专题:《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总》
希望本文所述对大家Python程序设计有所帮助。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]