写在前面
之前的文章中已经讲过了遗传算法的基本流程,并且用MATLAB实现过一遍了。这一篇文章主要面对的人群是看过了我之前的文章,因此我就不再赘述遗传算法是什么以及基本的内容了,假设大家已经知道我是怎么写遗传算法的了。
Python的遗传算法主函数
我的思想是,创建一个染色体的类,其中包括了两个变量:染色体chrom与适应度fitness。因此我们就可以通过直接建立对象来作为种群中的个体。
#染色体的类 class Chrom: chrom = [] fitness = 0 def showChrom(self): print(self.chrom) def showFitness(self): print(self.fitness)
所以我们开始设置基础参数。其中种群的表达方式我用的是字典,也就是用一个字典来保存种群内的所有个体,这个也是我想出来的创建多个对象的方法。
将字典的索引为个体的标号,如:chrom1, chrom2等。字典索引的值就是一个对象。这个对象拥有两个属性,就是染色体与适应度。
其实在这一方便来说,我觉得在思路上是优于利用MATLAB的矩阵式编程的。因为这样可以很直观的将个体与个体的属性这一种思想给表达出来,相比一堆矩阵来说,在逻辑上比较容易接受。
#基础参数 N = 200 #种群内个体数目 mut = 0.2 #突变概率 acr = 0.2 #交叉概率 pop = {} #存储染色体的字典 for i in range(N): pop['chrom'+str(i)] = Chrom() chromNodes = 2 #染色体节点数(变量个数) iterNum = 10000 #迭代次数 chromRange = [[0, 10], [0, 10]] #染色体范围 aveFitnessList = [] #平均适应度 bestFitnessList = [] #最优适应度
之后就是初始染色体了,其中就牵扯到了各种用来初始化种群、计算适应度、找最优等函数,我在这里分出了两个文件,分别为Genetic.py与Fitness.py。
Genetic.py里面有八个函数,主要包含了作用于种群或者染色体操作的函数,分别为:
- findBest函数,用于寻找种群中的最优染色体;
- findworse函数,用于寻找种群中的最劣染色体;
- initialize函数,用于初始化种群;
- calAveFitness函数,用于计算种群的平均适应度;
- mutChrom函数,用于对染色体进行变异;
- inRange函数,用于判断染色体节点值是否越界;
- acrChrom函数,用于对染色体进行交叉;
- compareChrom函数,用于比较两个染色体孰优孰劣。
Fitness.py里面有两个函数,主要包含了对适应度操作的函数,分别为:
- calFitness函数,用来迭代每一个个体,并计算适应度(利用funcFitness函数计算);
- funcFitness函数,计算单个个体的适应度。
因此可以列出初始化代码为
#初始染色体 pop = Genetic.initialize(pop, chromNodes, chromRange) pop = Fitness.calFitness(pop) #计算适应度 bestChrom = Genetic.findBest(pop) #寻找最优染色体 bestFitnessList.append(bestChrom[1]) #将当前最优适应度压入列表中 aveFitnessList.append(Genetic.calAveFitness(pop, N)) #计算并存储平均适应度
迭代过程的思路和逻辑与MATLAB无异
#开始迭代 for t in range(iterNum): #染色体突变 pop = Genetic.mutChrom(pop, mut, chromNodes, bestChrom, chromRange) #染色体交换 pop = Genetic.acrChrom(pop, acr, chromNodes) #寻找最优 nowBestChrom = Genetic.findBest(pop) #比较前一个时间的最优和现在的最优 bestChrom = Genetic.compareChrom(nowBestChrom, bestChrom) #寻找与替换最劣 worseChrom = Genetic.findWorse(pop) pop[worseChrom[0]].chrom = pop[bestChrom[0]].chrom.copy() pop[worseChrom[0]].fitness = pop[bestChrom[0]].fitness #存储最优与平均 bestFitnessList.append(bestChrom[1]) aveFitnessList.append(Genetic.calAveFitness(pop, N))
最后再做一下迭代的的图像
plt.figure(1) plt.plot(x, aveFitnessList) plt.plot(x, bestFitnessList) plt.show()
最后再在最前面加上各种库和文件就可以运行了。
import Genetic import Fitness import matplotlib.pyplot as plt import numpy as np
感悟
可以说最主要的感悟就是染色体这一个类。其实那个Genetic.py与Fitness.py这两个文件也可以直接包装成类,但是这样一来我就嫌主文件太臃肿,在其他里面再包装成类又多此一举,毕竟这只是一个小程序,所以我就这样写了。
深刻感悟到了面向对象编程的优点,在编程逻辑的处理上真是一种享受,只需要思考对象的属性即可,省去了许多复杂的思考。
另一个感悟就是创建多个对象时,利用字典的方法来创建对象。当初我也是困惑怎么建立一个类似于C++中的对象数组,上网查找了各种方法,结果都避而不谈(当然,也可能是我搜索能力太差没找到),所以经过尝试中遇到到了这种方法。
等有空我再详细说一下这个方法吧,这一次就先到这里。
剩余的函数补充
首先是Genetic.py里面的八个函数
import random #寻找最优染色体 def findBest(pop): best = ['1', 0.0000001] for i in pop: if best[1] < pop[i].fitness: best = [i, pop[i].fitness] return best #寻找最劣染色体 def findWorse(pop): worse = ['1', 999999] for i in pop: if worse[1] > pop[i].fitness: worse = [i, pop[i].fitness] return worse #赋初始值 def initialize(pop, chromNodes, chromRange): for i in pop: chromList = [] for j in range(chromNodes): chromList.append(random.uniform(chromRange[j][0], chromRange[j][1]+1)) pop[i].chrom = chromList.copy() return pop #计算平均适应度 def calAveFitness(pop, N): sumFitness = 0 for i in pop: sumFitness = sumFitness + pop[i].fitness aveFitness = sumFitness / N return aveFitness #进行突变 def mutChrom(pop, mut, chromNodes, bestChrom, chromRange): for i in pop: #如果随机数小于变异概率(即可以变异) if mut > random.random(): mutNode = random.randrange(0,chromNodes) mutRange = random.random() * (1-pop[i].fitness/bestChrom[1])**2 pop[i].chrom[mutNode] = pop[i].chrom[mutNode] * (1+mutRange) #判断变异后的范围是否在要求范围内 pop[i].chrom[mutNode] = inRange(pop[i].chrom[mutNode], chromRange[mutNode]) return pop #检验便宜范围是否在要求范围内 def inRange(mutNode, chromRange): if chromRange[0] < mutNode < chromRange[1]: return mutNode elif mutNode-chromRange[0] > mutNode-chromRange[1]: return chromRange[1] else: return chromRange[0] #进行交叉 def acrChrom(pop, acr, chromNodes): for i in pop: for j in pop: if acr > random.random(): acrNode = random.randrange(0, chromNodes) #两个染色体节点进行交换 pop[i].chrom[acrNode], pop[j].chrom[acrNode] = pop[j].chrom[acrNode], pop[i].chrom[acrNode] return pop #进行比较 def compareChrom(nowbestChrom, bestChrom): if bestChrom[1] > nowbestChrom[1]: return bestChrom else: return nowbestChrom
然后是Fitness.py的两个函数
import math def calFitness(pop): for i in pop: #计算每个染色体的适应度 pop[i].fitness = funcFitness(pop[i].chrom) return pop def funcFitness(chrom): #适应度函数 fitness = math.sin(chrom[0])+math.cos(chrom[1])+0.1*(chrom[0]+chrom[1])
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]