最近需要将csv文件转成DataFrame并以json的形式展示到前台,故需要用到Dataframe的to_json方法
to_json方法默认以列名为键,列内容为值,形成{col1:[v11,v21,v31…],col2:[v12,v22,v32],…}这种格式,但有时我们需要按行来转为json,形如这种格式[row1:{col1:v11,col2:v12,col3:v13…},row2:{col1:v21,col2:v22,col3:v23…}]
通过查找官网我们可以看到to_json方法有一个参数为orient,其参数说明如下:
orient : string Series default is ‘index' allowed values are: {‘split','records','index'} DataFrame default is ‘columns' allowed values are: {‘split','records','index','columns','values'} The format of the JSON string split : dict like {index -> [index], columns -> [columns], data -> [values]} records : list like [{column -> value}, … , {column -> value}] index : dict like {index -> {column -> value}} columns : dict like {column -> {index -> value}} values : just the values array table : dict like {‘schema': {schema}, ‘data': {data}} describing the data, and the data component is like orient='records'. Changed in version 0.20.0
大致意思为:
如果是Series转json,默认的orient是'index',orient可选参数有 {‘split','records','index'}
如果是DataFrame转json,默认的orient是'columns',orient可选参数有 {‘split','records','index','columns','values'}
json的格式如下
split,样式为 {index -> [index], columns -> [columns], data -> [values]}
records,样式为[{column -> value}, … , {column -> value}]
index ,样式为 {index -> {column -> value}}
columns,样式为 {index -> {column -> value}}
values,数组样式
table,样式为{‘schema': {schema}, ‘data': {data}},和records类似
看一下官网给的demo
df = pd.DataFrame([['a', 'b'], ['c', 'd']], index=['row 1', 'row 2'], columns=['col 1', 'col 2']) ########### split ########### df.to_json(orient='split') >'{"columns":["col 1","col 2"], "index":["row 1","row 2"], "data":[["a","b"],["c","d"]]}' ########### index ########### df.to_json(orient='index') >'{"row 1":{"col 1":"a","col 2":"b"},"row 2":{"col 1":"c","col 2":"d"}}' ########### records ########### df.to_json(orient='index') >'[{"col 1":"a","col 2":"b"},{"col 1":"c","col 2":"d"}]' ########### table ########### df.to_json(orient='table') >'{"schema": {"fields": [{"name": "index", "type": "string"}, {"name": "col 1", "type": "string"}, {"name": "col 2", "type": "string"}], "primaryKey": "index", "pandas_version": "0.20.0"}, "data": [{"index": "row 1", "col 1": "a", "col 2": "b"}, {"index": "row 2", "col 1": "c", "col 2": "d"}]}'
主要参考官网API:https://pandas.pydata.org/pandas-docs/stable/generated/pandas.DataFrame.to_json.html
以上这篇pandas.DataFrame.to_json按行转json的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]