DDR爱好者之家 Design By 杰米
LabelEncoder可以将标签分配一个0—n_classes-1之间的编码
将各种标签分配一个可数的连续编号:
> from sklearn import preprocessing > le = preprocessing.LabelEncoder() > le.fit([1, 2, 2, 6]) LabelEncoder() > le.classes_ array([1, 2, 6]) > le.transform([1, 1, 2, 6]) # Transform Categories Into Integers array([0, 0, 1, 2], dtype=int64) > le.inverse_transform([0, 0, 1, 2]) # Transform Integers Into Categories array([1, 1, 2, 6])
> le = preprocessing.LabelEncoder() > le.fit(["paris", "paris", "tokyo", "amsterdam"]) LabelEncoder() > list(le.classes_) ['amsterdam', 'paris', 'tokyo'] > le.transform(["tokyo", "tokyo", "paris"]) # Transform Categories Into Integers array([2, 2, 1], dtype=int64) > list(le.inverse_transform([2, 2, 1])) #Transform Integers Into Categories ['tokyo', 'tokyo', 'paris']
将DataFrame中的所有ID标签转换成连续编号:
from sklearn.preprocessing import LabelEncoder import numpy as np import pandas as pd df=pd.read_csv('testdata.csv',sep='|',header=None)
0 1 2 3 4 5 0 37 52 55 50 38 54 1 17 32 20 9 6 48 2 28 10 56 51 45 16 3 27 49 41 30 53 19 4 44 29 8 1 46 13 5 11 26 21 14 7 33 6 0 39 22 33 35 43 7 18 15 47 5 25 34 8 23 2 4 9 3 31 9 12 57 36 40 42 24
le = LabelEncoder() le.fit(np.unique(df.values)) df.apply(le.transform)
0 1 2 3 4 5 0 37 52 55 50 38 54 1 17 32 20 9 6 48 2 28 10 56 51 45 16 3 27 49 41 30 53 19 4 44 29 8 1 46 13 5 11 26 21 14 7 33 6 0 39 22 33 35 43 7 18 15 47 5 25 34 8 23 2 4 9 3 31 9 12 57 36 40 42 24
将DataFrame中的每一行ID标签分别转换成连续编号:
import pandas as pd from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import Pipeline class MultiColumnLabelEncoder: def __init__(self,columns = None): self.columns = columns # array of column names to encode def fit(self,X,y=None): return self # not relevant here def transform(self,X): ''' Transforms columns of X specified in self.columns using LabelEncoder(). If no columns specified, transforms all columns in X. ''' output = X.copy() if self.columns is not None: for col in self.columns: output[col] = LabelEncoder().fit_transform(output[col]) else: for colname,col in output.iteritems(): output[colname] = LabelEncoder().fit_transform(col) return output def fit_transform(self,X,y=None): return self.fit(X,y).transform(X)
MultiColumnLabelEncoder(columns = [0, 1, 2, 3, 4, 5]).fit_transform(df)
或者
df.apply(LabelEncoder().fit_transform)
0 1 2 3 4 5 0 8 8 8 7 5 9 1 3 5 2 2 1 8 2 7 1 9 8 7 1 3 6 7 6 4 9 2 4 9 4 1 0 8 0 5 1 3 3 3 2 5 6 0 6 4 5 4 7 7 4 2 7 1 3 6 8 5 0 0 2 0 4 9 2 9 5 6 6 3
# Create some toy data in a Pandas dataframe fruit_data = pd.DataFrame({ 'fruit': ['apple','orange','pear','orange'], 'color': ['red','orange','green','green'], 'weight': [5,6,3,4] })
color fruit weight 0 red apple 5 1 orange orange 6 2 green pear 3 3 green orange 4
MultiColumnLabelEncoder(columns = ['fruit','color']).fit_transform(fruit_data)
或者
fruit_data[['fruit','color']]=fruit_data[['fruit','color']].apply(LabelEncoder().fit_transform)
color fruit weight 0 2 0 5 1 1 1 6 2 0 2 3 3 0 1 4
以上这篇使用sklearn之LabelEncoder将Label标准化的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2024年11月27日
2024年11月27日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]