首先了解一下需要的几个类所在的package
from torchvision import transforms, datasets as ds from torch.utils.data import DataLoader import matplotlib.pyplot as plt import numpy as np #transform = transforms.Compose是把一系列图片操作组合起来,比如减去像素均值等。 #DataLoader读入的数据类型是PIL.Image #这里对图片不做任何处理,仅仅是把PIL.Image转换为torch.FloatTensor,从而可以被pytorch计算 transform = transforms.Compose( [ transforms.ToTensor() ] )
Step 1,得到torch.utils.data.Dataset实例。
torch.utils.data.Dataset是一个抽象类,CIFAR100是它的一个实例化子类
train=True,读取训练集;train=False,读取测试集
download=False,不下载。如果为True,则先检查root下有无该数据集,如果没有就先下载。
train_set = ds.CIFAR100(root='.', train=True, transform=transform, target_transform=None, download=True)
Step 2,把Dataset封装成torch.utils.data.DataLoader
data_loader = DataLoader(dataset=train_set, batch_size=1, shuffle=False, num_workers=2) # # 生成torch.utils.data.DataLoaderIter # # 不过DataLoaderIter它会被DataLoader自动创建并且调用,我们用不到 # data_iter = iter(data_loader) # images, labels = next(data_iter)
step 3,从DataLoader里读取数据,并将图片显示出来。
注意:
1)使用for...in...循环读取数据的时候,会自动调用DataLoader里的__next__()函数
而且只能对Tensor实例进行迭代,所以之前的transforms必须最后加一个transforms.ToTensor()
2)显示图片有两种方式:Image.show()和plt.imshow(ndarray)
Image.show():
通过transforms.ToPILImage()把FloatTensor转化为Image
plt.imshow(ndarray):
通过FloatTensor.numpy()转化为ndarray,再调用plt.imshow()
to_pil_image = transforms.ToPILImage() cnt = 0 for image,label in data_loader: if cnt>=3: # 只显示3张图片 break print(label) # 显示label # 方法1:Image.show() # transforms.ToPILImage()中有一句 # npimg = np.transpose(pic.numpy(), (1, 2, 0)) # 因此pic只能是3-D Tensor,所以要用image[0]消去batch那一维 img = to_pil_image(image[0]) img.show() # 方法2:plt.imshow(ndarray) img = image[0] # plt.imshow()只能接受3-D Tensor,所以也要用image[0]消去batch那一维 img = img.numpy() # FloatTensor转为ndarray img = np.transpose(img, (1,2,0)) # 把channel那一维放到最后 # 显示图片 plt.imshow(img) plt.show() cnt += 1
另外补一句np.transpose()的用法。
第一个参数是要transpose的图片;
第二个是shape。比如一个ndarray是(channel, height, width),如果给第二个参数(height, width,channel),就会把第0维channel整个搬到最后。
以上这篇PyTorch读取Cifar数据集并显示图片的实例讲解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]