DDR爱好者之家 Design By 杰米
                                本文实例为大家分享了python调用百度语音REST API的具体代码,供大家参考,具体内容如下
(百度的rest接口的部分网址发生了一定的变化,相关代码已更新) 
百度通过 REST API 的方式给开发者提供一个通用的 HTTP 接口,基于该接口,开发者可以轻松的获得语音合成与语音识别能力。SDK中只提供了PHP、C和JAVA的相关样例,使用python也可以灵活的对端口进行调用,本文描述了简单使用Python调用百度语音识别服务 REST API 的简单样例。
1、语音识别与语音合成的调用
注册开发者帐号和创建应用的过程就不再赘述,百度的REST API在调用过程基本分为三步:
- 获取token
- 向Rest接口提交数据
- 处理返回数据
 
具体代码如下所示:
#!/usr/bin/python3
import urllib.request
import urllib
import json
import base64
class BaiduRest:
  def __init__(self, cu_id, api_key, api_secert):
    # token认证的url
    self.token_url = "https://openapi.baidu.com/oauth/2.0/token"
    # 语音合成的resturl
    self.getvoice_url = "http://tsn.baidu.com/text2audio"
    # 语音识别的resturl
    self.upvoice_url = 'http://vop.baidu.com/server_api'
    self.cu_id = cu_id
    self.getToken(api_key, api_secert)
    return
  def getToken(self, api_key, api_secert):
    # 1.获取token
    token_url = self.token_url % (api_key,api_secert)
    r_str = urllib.request.urlopen(token_url).read()
    token_data = json.loads(r_str)
    self.token_str = token_data['access_token']
    pass
  def getVoice(self, text, filename):
    # 2. 向Rest接口提交数据
    get_url = self.getvoice_url % (urllib.parse.quote(text), self.cu_id, self.token_str)
    voice_data = urllib.request.urlopen(get_url).read()
    # 3.处理返回数据
    voice_fp = open(filename,'wb+')
    voice_fp.write(voice_data)
    voice_fp.close()
    pass
  def getText(self, filename):
    # 2. 向Rest接口提交数据
    data = {}
    # 语音的一些参数
    data['format'] = 'wav'
    data['rate'] = 8000
    data['channel'] = 1
    data['cuid'] = self.cu_id
    data['token'] = self.token_str
    wav_fp = open(filename,'rb')
    voice_data = wav_fp.read()
    data['len'] = len(voice_data)
    data['speech'] = base64.b64encode(voice_data).decode('utf-8')
    post_data = json.dumps(data)
    r_data = urllib.request.urlopen(self.upvoice_url,data=bytes(post_data,encoding="utf-8")).read()
    # 3.处理返回数据
    return json.loads(r_data)['result']
if __name__ == "__main__":
  # 我的api_key,供大家测试用,在实际工程中请换成自己申请的应用的key和secert
  api_key = "SrhYKqzl3SE1URnAEuZ0FKdT" 
  api_secert = "hGqeCkaMPb0ELMqtRGc2VjWdmjo7T89d"
  # 初始化
  bdr = BaiduRest("test_python", api_key, api_secert)
  # 将字符串语音合成并保存为out.mp3
  bdr.getVoice("你好北京邮电大学!", "out.mp3")
  # 识别test.wav语音内容并显示
  print(bdr.getText("out.wav"))
2、调用pyaudio使用麦克风录制声音
python中的pyaudio库可以直接通过麦克风录制声音,可使用pip进行安装。我们可以通过调用该库,获取到wav测试语音。 
具体代码如下所示:
#!/usr/bin/python3
# -*- coding: utf-8 -*-
from pyaudio import PyAudio, paInt16 
import numpy as np 
from datetime import datetime 
import wave
class recoder:
  NUM_SAMPLES = 2000   #pyaudio内置缓冲大小
  SAMPLING_RATE = 8000  #取样频率
  LEVEL = 500     #声音保存的阈值
  COUNT_NUM = 20   #NUM_SAMPLES个取样之内出现COUNT_NUM个大于LEVEL的取样则记录声音
  SAVE_LENGTH = 8     #声音记录的最小长度:SAVE_LENGTH * NUM_SAMPLES 个取样
  TIME_COUNT = 60   #录音时间,单位s
  Voice_String = []
  def savewav(self,filename):
    wf = wave.open(filename, 'wb') 
    wf.setnchannels(1) 
    wf.setsampwidth(2) 
    wf.setframerate(self.SAMPLING_RATE) 
    wf.writeframes(np.array(self.Voice_String).tostring()) 
    # wf.writeframes(self.Voice_String.decode())
    wf.close() 
  def recoder(self):
    pa = PyAudio() 
    stream = pa.open(format=paInt16, channels=1, rate=self.SAMPLING_RATE, input=True, 
      frames_per_buffer=self.NUM_SAMPLES) 
    save_count = 0 
    save_buffer = [] 
    time_count = self.TIME_COUNT
    while True:
      time_count -= 1
      # print time_count
      # 读入NUM_SAMPLES个取样
      string_audio_data = stream.read(self.NUM_SAMPLES) 
      # 将读入的数据转换为数组
      audio_data = np.fromstring(string_audio_data, dtype=np.short)
      # 计算大于LEVEL的取样的个数
      large_sample_count = np.sum( audio_data > self.LEVEL )
      print(np.max(audio_data))
      # 如果个数大于COUNT_NUM,则至少保存SAVE_LENGTH个块
      if large_sample_count > self.COUNT_NUM:
        save_count = self.SAVE_LENGTH 
      else: 
        save_count -= 1
      if save_count < 0:
        save_count = 0 
      if save_count > 0 : 
      # 将要保存的数据存放到save_buffer中
        #print save_count > 0 and time_count >0
        save_buffer.append( string_audio_data ) 
      else: 
      #print save_buffer
      # 将save_buffer中的数据写入WAV文件,WAV文件的文件名是保存的时刻
        #print "debug"
        if len(save_buffer) > 0 : 
          self.Voice_String = save_buffer
          save_buffer = [] 
          print("Recode a piece of voice successfully!")
          return True
      if time_count==0: 
        if len(save_buffer)>0:
          self.Voice_String = save_buffer
          save_buffer = [] 
          print("Recode a piece of voice successfully!")
          return True
        else:
          return False
if __name__ == "__main__":
  r = recoder()
  r.recoder()
  r.savewav("test.wav")  
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
                            
                                广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
                        免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
                        暂无评论...
                                    RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年11月01日
                                2025年11月01日
                    - 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]
 
                     
                    