DDR爱好者之家 Design By 杰米
计算曲线长度,根据线积分公式:
,令积分函数 f(x,y,z) 为1,即计算曲线的长度,将其微元化:
其中
根据此时便可在python编程实现,给出4个例子,代码中已有详细注释,不再赘述
''' 计算曲线长度,根据线积分公式: \int_A^Bf(x,y,z)dl,令积分函数为1,即计算曲线的长度 ''' import numpy as np from mpl_toolkits.mplot3d import * import matplotlib.pyplot as plt ## 求二维圆周长,半径为1,采用参数形式 def circle_2d(dt=0.001,plot=True): dt = dt # 变化率 t = np.arange(0,2*np.pi, dt) x = np.cos(t) y = np.sin(t) # print(len(t)) area_list = [] # 存储每一微小步长的曲线长度 for i in range(1,len(t)): # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始 dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) # 将计算结果存储起来 area_list.append(dl_i) area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度 print("二维圆周长:{:.4f}".format(area)) if plot: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x,y) plt.title("circle") plt.show() ## 二维空间曲线,采用参数形式 def curve_param_2d(dt=0.0001,plot=True): dt = dt # 变化率 t = np.arange(0,2*np.pi, dt) x = t*np.cos(t) y = t*np.sin(t) # print(len(t)) area_list = [] # 存储每一微小步长的曲线长度 # 下面的方式是循环实现 # for i in range(1,len(t)): # # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始 # dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) # # 将计算结果存储起来 # area_list.append(dl_i) # 更加pythonic的写法 area_list = [np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) for i in range(1,len(t))] area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度 print("二维参数曲线长度:{:.4f}".format(area)) if plot: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x,y) plt.title("2-D Parameter Curve") plt.show() ## 二维空间曲线 def curve_2d(dt=0.0001,plot=True): dt = dt # 变化率 t = np.arange(-6,10, dt) x = t y = x**3/8 - 4*x + np.sin(3*x) # print(len(t)) area_list = [] # 存储每一微小步长的曲线长度 # for i in range(1,len(t)): # # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始 # dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) # # 将计算结果存储起来 # area_list.append(dl_i) area_list = [np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 ) for i in range(1,len(t))] area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度 print("二维曲线长度:{:.4f}".format(area)) if plot: fig = plt.figure() ax = fig.add_subplot(111) ax.plot(x,y) plt.title("2-D Curve") plt.show() ## 三维空间曲线,采用参数形式 def curve_3d(dt=0.001,plot=True): dt = dt # 变化率 t = np.arange(0,2*np.pi, dt) x = t*np.cos(t) y = t*np.sin(t) z = 2*t # print(len(t)) area_list = [] # 存储每一微小步长的曲线长度 for i in range(1,len(t)): # 计算每一微小步长的曲线长度,dx = x_{i}-x{i-1},索引从1开始 dl_i = np.sqrt( (x[i]-x[i-1])**2 + (y[i]-y[i-1])**2 + (z[i]-z[i-1])**2 ) # 将计算结果存储起来 area_list.append(dl_i) area = sum(area_list)# 求和计算曲线在t:[0,2*pi]的长度 print("三维空间曲线长度:{:.4f}".format(area)) if plot: fig = plt.figure() ax = fig.add_subplot(111,projection='3d') ax.plot(x,y,z) plt.title("3-D Curve") plt.show() if __name__ == '__main__': circle_2d(plot=True) curve_param_2d(plot=True) curve_2d(plot=True) curve_3d(plot=True)
得到结果:
二维圆周长:6.2830 二维参数曲线长度:21.2558 二维曲线长度:128.2037 三维空间曲线长度:25.3421
以上这篇python微元法计算函数曲线长度的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2024年11月27日
2024年11月27日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]