DDR爱好者之家 Design By 杰米
本文为大家分享了python的concat等多种用法,供大家参考,具体内容如下
1、numpy中的concatenate()函数:
> a = np.array([[1, 2], [3, 4]]) > b = np.array([[5, 6]]) > np.concatenate((a, b), axis=0) array([[1, 2], [3, 4], [5, 6]]) > np.concatenate((a, b.T), axis=1) array([[1, 2, 5], [3, 4, 6]])
2、pandas中的merge,concat,join
# In[]:数据的合并 # 1 ,merge,类似数据库中的 # (1)内连接,pd.merge(a1, a2, on='key') # (2)左连接,pd.merge(a1, a2, on='key', how='left') # (3)右连接,pd.merge(a1, a2, on='key', how='right') # (4)外连接, pd.merge(a1, a2, on='key', how='outer') data1 = pd.DataFrame( np.arange(0,16).reshape(4,4), columns=list('abcd') ) data1 data2 = [ [4,1,5,7], [6,5,7,1], [9,9,123,129], [16,16,32,1] ] data2 = pd.DataFrame(data2,columns = ['a','b','c','d']) data2 # 内连接 ,交集 pd.merge(data1,data2,on=['b']) # 左连接 注意:如果 on 有两个条件,on = ['a','b'] # how = 'left','right','outer' pd.merge(data1,data2,on='b',how='left') # 2,append,相当于R中的rbind # ignore_index = True:这个时候 表示index重新记性排列,而且这种方法是复制一个样本 data1.append(data2,ignore_index = True) # 3,join data2.columns=list('pown') # 列名不能重叠:在这里的用法和R中rbind很像,但是join的用法还是相对麻烦的 result = data1.join(data2) result # 4,concat 这个方法能够实现上面所有的方法的效果 # concat函数是pandas底下的方法,可以把数据根据不同的轴进行简单的融合 # pd.concat(objs, axis=0, join='outer', join_axes=None, ignore_index=False, # keys=None, levels=None, names=None, verify_integrity=False) # 参数说明: # objs:series,dataframe,或者panel构成的序列list # axis:0 行,1列 # join:inner,outer # a,相同字段表首尾巴相接 data1.columns = list('abcd') data2.columns =list('abcd') data3 = data2 # 为了更好的查看连接后的数据来源,添加一个keys更好查看 pd.concat([data1,data2,data3],keys=['data1','data2','data3']) # b ,列合并(也就是行对齐):axis = 1, pd.concat([data1,data2,data3],axis = 1,keys = ['data1','data2','data3']) data4 = data3[['a','b','c']] # 在有些数据不存在的时候,会自动填充NAN pd.concat([data1,data4]) # c:join:inner 交集,outer ,并集 pd.concat([data1,data4],join='inner') # 在列名没有一个相同的时候会报错 # data4.index = list('mnp') # pd.concat([data1,data4])
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年02月22日
2025年02月22日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]