DDR爱好者之家 Design By 杰米

__author__ = 'Administrator'

import numpy as np
import cv2
 
mri_img = np.load('mri_img.npy')
 
# normalization
mri_max = np.amax(mri_img)
mri_min = np.amin(mri_img)
mri_img = ((mri_img-mri_min)/(mri_max-mri_min))*255
mri_img = mri_img.astype('uint8')
 
r, c, h = mri_img.shape
for k in range(h):
 temp = mri_img[:,:,k]
 clahe = cv2.createCLAHE(clipLimit=2.0, tileGridSize=(8,8))
 img = clahe.apply(temp)
 cv2.imshow('mri', np.concatenate([temp,img], 1))
 cv2.waitKey(0)

均衡化前、后对比效果

Python cv2 图像自适应灰度直方图均衡化处理方法

Python cv2 图像自适应灰度直方图均衡化处理方法

Python cv2 图像自适应灰度直方图均衡化处理方法

以上这篇Python cv2 图像自适应灰度直方图均衡化处理方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米