DDR爱好者之家 Design By 杰米

背景:

实现用python的optimize库的fsolve对非线性方程组进行求解。可以看到这一个问题实际上还是一个优化问题,也可以用之前拟合函数的leastsq求解。下面用这两个方法进行对比:

代码:

from scipy.optimize import fsolve,leastsq
from math import sin,cos
 
def f(x):
 x0 = float(x[0])
 x1 = float(x[1])
 x2 = float(x[2])
 return [
 5*x1+3,
 4*x0*x0 - 2*sin(x1*x2),
 x1*x2-1.5
 ]
 
x0 = [1,1,1]
result = fsolve(f,x0)
 
print("===================")
print()
print("求解函数名称:",fsolve.__name__)
print("解:",result)
print("各向量值:",f(result))
#拟合函数来求解
h = leastsq(f,x0)
 
print("===================")
print()
print("求解函数名称:",leastsq.__name__)
print("解:",h[0])
print("各向量的值:",f(h[0]))

结果:

===================


求解函数名称: fsolve
解: [-0.70622057 -0.6        -2.5       ]
各向量值: [0.0, -9.126033262418787e-14, 5.329070518200751e-15]
===================


求解函数名称: leastsq
解: [-0.70622057 -0.6        -2.5       ]
各向量的值: [0.0, -2.220446049250313e-16, 0.0]

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米