DDR爱好者之家 Design By 杰米
本文实例为大家分享了python实现三次样条插值的具体代码,供大家参考,具体内容如下
函数:
算法分析
三次样条插值。就是在分段插值的一种情况。
要求:
- 在每个分段区间上是三次多项式(这就是三次样条中的三次的来源)
- 在整个区间(开区间)上二阶导数连续(当然啦,这里主要是强调在节点上的连续)
- 加上边界条件。边界条件只需要给出两个方程。构建一个方程组,就可以解出所有的参数。
这里话,根据第一类样条作为边界。(就是知道两端节点的导数数值,然后来做三次样条插值)
但是这里也分为两种情况,分别是这个数值是随便给的一个数,还是说根据函数的在对应点上数值给出。
情况一:两边导数数值给出
这里假设数值均为1。即 f′(x0)=f′(xn)=f′(xn)=1的情况。
情况一图像
情况一代码
import numpy as np
from sympy import *
import matplotlib.pyplot as plt
def f(x):
return 1 / (1 + x ** 2)
def cal(begin, end, i):
by = f(begin)
ey = f(end)
I = Ms[i] * ((end - n) ** 3) / 6 + Ms[i + 1] * ((n - begin) ** 3) / 6 + (by - Ms[i] / 6) * (end - n) + (
ey - Ms[i + 1] / 6) * (n - begin)
return I
def ff(x): # f[x0, x1, ..., xk]
ans = 0
for i in range(len(x)):
temp = 1
for j in range(len(x)):
if i != j:
temp *= (x[i] - x[j])
ans += f(x[i]) / temp
return ans
def calM():
lam = [1] + [1 / 2] * 9
miu = [1 / 2] * 9 + [1]
# Y = 1 / (1 + n ** 2)
# df = diff(Y, n)
x = np.array(range(11)) - 5
# ds = [6 * (ff(x[0:2]) - df.subs(n, x[0]))]
ds = [6 * (ff(x[0:2]) - 1)]
for i in range(9):
ds.append(6 * ff(x[i: i + 3]))
# ds.append(6 * (df.subs(n, x[10]) - ff(x[-2:])))
ds.append(6 * (1 - ff(x[-2:])))
Mat = np.eye(11, 11) * 2
for i in range(11):
if i == 0:
Mat[i][1] = lam[i]
elif i == 10:
Mat[i][9] = miu[i - 1]
else:
Mat[i][i - 1] = miu[i - 1]
Mat[i][i + 1] = lam[i]
ds = np.mat(ds)
Mat = np.mat(Mat)
Ms = ds * Mat.I
return Ms.tolist()[0]
def calnf(x):
nf = []
for i in range(len(x) - 1):
nf.append(cal(x[i], x[i + 1], i))
return nf
def calf(f, x):
y = []
for i in x:
y.append(f.subs(n, i))
return y
def nfSub(x, nf):
tempx = np.array(range(11)) - 5
dx = []
for i in range(10):
labelx = []
for j in range(len(x)):
if x[j] >= tempx[i] and x[j] < tempx[i + 1]:
labelx.append(x[j])
elif i == 9 and x[j] >= tempx[i] and x[j] <= tempx[i + 1]:
labelx.append(x[j])
dx = dx + calf(nf[i], labelx)
return np.array(dx)
def draw(nf):
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
x = np.linspace(-5, 5, 101)
y = f(x)
Ly = nfSub(x, nf)
plt.plot(x, y, label='原函数')
plt.plot(x, Ly, label='三次样条插值函数')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.savefig('1.png')
plt.show()
def lossCal(nf):
x = np.linspace(-5, 5, 101)
y = f(x)
Ly = nfSub(x, nf)
Ly = np.array(Ly)
temp = Ly - y
temp = abs(temp)
print(temp.mean())
if __name__ == '__main__':
x = np.array(range(11)) - 5
y = f(x)
n, m = symbols('n m')
init_printing(use_unicode=True)
Ms = calM()
nf = calnf(x)
draw(nf)
lossCal(nf)
情况二:两边导数数值由函数本身算出
这里假设数值均为1。即 f′(xi)=S′(xi)(i=0,n)f′(xi)=S′(xi)(i=0,n)的情况。
情况二图像
情况二代码
import numpy as np
from sympy import *
import matplotlib.pyplot as plt
def f(x):
return 1 / (1 + x ** 2)
def cal(begin, end, i):
by = f(begin)
ey = f(end)
I = Ms[i] * ((end - n) ** 3) / 6 + Ms[i + 1] * ((n - begin) ** 3) / 6 + (by - Ms[i] / 6) * (end - n) + (
ey - Ms[i + 1] / 6) * (n - begin)
return I
def ff(x): # f[x0, x1, ..., xk]
ans = 0
for i in range(len(x)):
temp = 1
for j in range(len(x)):
if i != j:
temp *= (x[i] - x[j])
ans += f(x[i]) / temp
return ans
def calM():
lam = [1] + [1 / 2] * 9
miu = [1 / 2] * 9 + [1]
Y = 1 / (1 + n ** 2)
df = diff(Y, n)
x = np.array(range(11)) - 5
ds = [6 * (ff(x[0:2]) - df.subs(n, x[0]))]
# ds = [6 * (ff(x[0:2]) - 1)]
for i in range(9):
ds.append(6 * ff(x[i: i + 3]))
ds.append(6 * (df.subs(n, x[10]) - ff(x[-2:])))
# ds.append(6 * (1 - ff(x[-2:])))
Mat = np.eye(11, 11) * 2
for i in range(11):
if i == 0:
Mat[i][1] = lam[i]
elif i == 10:
Mat[i][9] = miu[i - 1]
else:
Mat[i][i - 1] = miu[i - 1]
Mat[i][i + 1] = lam[i]
ds = np.mat(ds)
Mat = np.mat(Mat)
Ms = ds * Mat.I
return Ms.tolist()[0]
def calnf(x):
nf = []
for i in range(len(x) - 1):
nf.append(cal(x[i], x[i + 1], i))
return nf
def calf(f, x):
y = []
for i in x:
y.append(f.subs(n, i))
return y
def nfSub(x, nf):
tempx = np.array(range(11)) - 5
dx = []
for i in range(10):
labelx = []
for j in range(len(x)):
if x[j] >= tempx[i] and x[j] < tempx[i + 1]:
labelx.append(x[j])
elif i == 9 and x[j] >= tempx[i] and x[j] <= tempx[i + 1]:
labelx.append(x[j])
dx = dx + calf(nf[i], labelx)
return np.array(dx)
def draw(nf):
plt.rcParams['font.sans-serif'] = ['SimHei']
plt.rcParams['axes.unicode_minus'] = False
x = np.linspace(-5, 5, 101)
y = f(x)
Ly = nfSub(x, nf)
plt.plot(x, y, label='原函数')
plt.plot(x, Ly, label='三次样条插值函数')
plt.xlabel('x')
plt.ylabel('y')
plt.legend()
plt.savefig('1.png')
plt.show()
def lossCal(nf):
x = np.linspace(-5, 5, 101)
y = f(x)
Ly = nfSub(x, nf)
Ly = np.array(Ly)
temp = Ly - y
temp = abs(temp)
print(temp.mean())
if __name__ == '__main__':
x = np.array(range(11)) - 5
y = f(x)
n, m = symbols('n m')
init_printing(use_unicode=True)
Ms = calM()
nf = calnf(x)
draw(nf)
lossCal(nf)
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2025年11月10日
2025年11月10日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]


