DDR爱好者之家 Design By 杰米
1、es的批量插入
这是为了方便后期配置的更改,把配置信息放在logging.conf中
用elasticsearch来实现批量操作,先安装依赖包,sudo pip install Elasticsearch2
from elasticsearch import Elasticsearch class ImportEsData: logging.config.fileConfig("logging.conf") logger = logging.getLogger("msg") def __init__(self,hosts,index,type): self.es = Elasticsearch(hosts=hosts.strip(',').split(','), timeout=5000) self.index = index self.type = type def set_date(self,data): # 批量处理 # es.index(index="test-index",doc_type="test-type",id=42,body={"any":"data","timestamp":datetime.now()}) self.es.index(index=self.index,doc_type=self.index,body=data)
2、使用pykafka消费kafka
1.因为kafka是0.8,pykafka不支持zk,只能用get_simple_consumer来实现
2.为了实现多个应用同时消费而且不重消费,所以一个应用消费一个partition
3. 为是确保消费数据量在不满足10000这个批量值,能在一个时间范围内插入到es中,这里设置consumer_timeout_ms一个超时等待时间,退出等待消费阻塞。
4.退出等待消费阻塞后导致无法再消费数据,因此在获取self.consumer 的外层加入了while True 一个死循环
#!/usr/bin/python # -*- coding: UTF-8 -*- from pykafka import KafkaClient import logging import logging.config from ConfigUtil import ConfigUtil import datetime class KafkaPython: logging.config.fileConfig("logging.conf") logger = logging.getLogger("msg") logger_data = logging.getLogger("data") def __init__(self): self.server = ConfigUtil().get("kafka","kafka_server") self.topic = ConfigUtil().get("kafka","topic") self.group = ConfigUtil().get("kafka","group") self.partition_id = int(ConfigUtil().get("kafka","partition")) self.consumer_timeout_ms = int(ConfigUtil().get("kafka","consumer_timeout_ms")) self.consumer = None self.hosts = ConfigUtil().get("es","hosts") self.index_name = ConfigUtil().get("es","index_name") self.type_name = ConfigUtil().get("es","type_name") def getConnect(self): client = KafkaClient(self.server) topic = client.topics[self.topic] p = topic.partitions ps={p.get(self.partition_id)} self.consumer = topic.get_simple_consumer( consumer_group=self.group, auto_commit_enable=True, consumer_timeout_ms=self.consumer_timeout_ms, # num_consumer_fetchers=1, # consumer_id='test1', partitions=ps ) self.starttime = datetime.datetime.now() def beginConsumer(self): print("beginConsumer kafka-python") imprtEsData = ImportEsData(self.hosts,self.index_name,self.type_name) #创建ACTIONS count = 0 ACTIONS = [] while True: endtime = datetime.datetime.now() print (endtime - self.starttime).seconds for message in self.consumer: if message is not None: try: count = count + 1 # print(str(message.partition.id)+","+str(message.offset)+","+str(count)) # self.logger.info(str(message.partition.id)+","+str(message.offset)+","+str(count)) action = { "_index": self.index_name, "_type": self.type_name, "_source": message.value } ACTIONS.append(action) if len(ACTIONS) >= 10000: imprtEsData.set_date(ACTIONS) ACTIONS = [] self.consumer.commit_offsets() endtime = datetime.datetime.now() print (endtime - self.starttime).seconds #break except (Exception) as e: # self.consumer.commit_offsets() print(e) self.logger.error(e) self.logger.error(str(message.partition.id)+","+str(message.offset)+","+message.value+"\n") # self.logger_data.error(message.value+"\n") # self.consumer.commit_offsets() if len(ACTIONS) > 0: self.logger.info("等待时间超过,consumer_timeout_ms,把集合数据插入es") imprtEsData.set_date(ACTIONS) ACTIONS = [] self.consumer.commit_offsets() def disConnect(self): self.consumer.close() from elasticsearch import Elasticsearch from elasticsearch.helpers import bulk class ImportEsData: logging.config.fileConfig("logging.conf") logger = logging.getLogger("msg") def __init__(self,hosts,index,type): self.es = Elasticsearch(hosts=hosts.strip(',').split(','), timeout=5000) self.index = index self.type = type def set_date(self,data): # 批量处理 success = bulk(self.es, data, index=self.index, raise_on_error=True) self.logger.info(success)
3、运行
if __name__ == '__main__': kp = KafkaPython() kp.getConnect() kp.beginConsumer() # kp.disConnect()
注:简单的写了一个从kafka中读取数据到一个list里,当数据达到一个阈值时,在批量插入到 es的插件
现在还在批量的压测中。。。
以上这篇python消费kafka数据批量插入到es的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
2024年11月26日
2024年11月26日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]