DDR爱好者之家 Design By 杰米

1、一次二次多项式拟合

一次二次比较简单,直接使用numpy中的函数即可,polyfit(x, y, degree)。

2、指数幂数拟合curve_fit

使用scipy.optimize 中的curve_fit,幂数拟合例子如下:

from scipy.optimize import curve_fit
import matplotlib.pyplot as plt
import numpy as np
 
def func(x, a, b, c):
 return a * np.exp(-b * x) + c
 
xdata = np.linspace(0, 4, 50)
y = func(xdata, 2.5, 1.3, 0.5)
ydata = y + 0.2 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(func, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [func(i, popt[0],popt[1],popt[2]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt

下面是原始数据和拟合曲线:

对python指数、幂数拟合curve_fit详解

下面是指数拟合例子:

def fund(x, a, b):
 return x**a + b
 
xdata = np.linspace(0, 4, 50)
y = fund(xdata, 2.5, 1.3)
ydata = y + 4 * np.random.normal(size=len(xdata))
plt.plot(xdata,ydata,'b-')
popt, pcov = curve_fit(fund, xdata, ydata)
#popt数组中,三个值分别是待求参数a,b,c
y2 = [fund(i, popt[0],popt[1]) for i in xdata]
plt.plot(xdata,y2,'r--')
print popt

下图是原始数据和拟合曲线:

对python指数、幂数拟合curve_fit详解

以上这篇对python指数、幂数拟合curve_fit详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?