DDR爱好者之家 Design By 杰米
关于excel和shp的使用在matplotlib
- 使用pandas 对excel进行简单操作
- 使用cartopy 读取shpfile 展示到matplotlib中
- 利用shpfile文件中的一些字段进行一些着色处理
#!/usr/bin/env python # -*- coding: utf-8 -*- # @File : map02.py # @Author: huifer # @Date : 2018/6/28 import folium import pandas as pd import requests import matplotlib.pyplot as plt import cartopy.crs as ccrs import zipfile import cartopy.io.shapereader as shaperead from matplotlib import cm from cartopy.mpl.ticker import LongitudeFormatter, LatitudeFormatter import os dataurl = "http://image.data.cma.cn/static/doc/A/A.0012.0001/SURF_CHN_MUL_HOR_STATION.xlsx" shpurl = "http://www.naturalearthdata.com/http//www.naturalearthdata.com/download/10m/cultural/ne_10m_admin_0_countries.zip" def download_file(url): """ 根据url下载文件 :param url: str """ r = requests.get(url, allow_redirects=True) try: open(url.split('/')[-1], 'wb').write(r.content) except Exception as e: print(e) def degree_conversion_decimal(x): """ 度分转换成十进制 :param x: float :return: integer float """ integer = int(x) integer = integer + (x - integer) * 1.66666667 return integer def unzip(zip_path, out_path): """ 解压zip :param zip_path:str :param out_path: str :return: """ zip_ref = zipfile.ZipFile(zip_path, 'r') zip_ref.extractall(out_path) zip_ref.close() def get_record(shp, key, value): countries = shp.records() result = [country for country in countries if country.attributes[key] == value] countries = shp.records() return result def read_excel(path): data = pd.read_excel(path) # print(data.head(10)) # 获取几行 # print(data.ix[data['省份']=='浙江',:].shape[0]) # 计数工具 # print(data.sort_values('观测场拔海高度(米)',ascending=False).head(10))# 根据值排序 # 判断经纬度是什么格式(度分 、 十进制) 判断依据 %0.2f 是否大于60 # print(data['经度'].apply(lambda x:x-int(x)).sort_values(ascending=False).head()) # 结果判断为度分保存 # 坐标处理 data['经度'] = data['经度'].apply(degree_conversion_decimal) data['纬度'] = data['纬度'].apply(degree_conversion_decimal) ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent([70, 140, 15, 55]) ax.stock_img() ax.scatter(data['经度'], data['纬度'], s=0.3, c='g') # shp = shaperead.Reader('ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp') # # 抽取函数 州:国家 # city_list = [country for country in countries if country.attributes['ADMIN'] == 'China'] # countries = shp.records() plt.savefig('test.png') plt.show() def gdp(shp_path): """ GDP 着色图 :return: """ shp = shaperead.Reader(shp_path) cas = get_record(shp, 'SUBREGION', 'Central Asia') gdp = [r.attributes['GDP_MD_EST'] for r in cas] gdp_min = min(gdp) gdp_max = max(gdp) ax = plt.axes(projection=ccrs.PlateCarree()) ax.set_extent([45, 90, 35, 55]) for r in cas: color = cm.Greens((r.attributes['GDP_MD_EST'] - gdp_min) / (gdp_max - gdp_min)) ax.add_geometries(r.geometry, ccrs.PlateCarree(), facecolor=color, edgecolor='black', linewidth=0.5) ax.text(r.geometry.centroid.x, r.geometry.centroid.y, r.attributes['ADMIN'], horizontalalignment='center', verticalalignment='center', transform=ccrs.Geodetic()) ax.set_xticks([45, 55, 65, 75, 85], crs=ccrs.PlateCarree()) # x坐标标注 ax.set_yticks([35, 45, 55], crs=ccrs.PlateCarree()) # y 坐标标注 lon_formatter = LongitudeFormatter(zero_direction_label=True) lat_formatter = LatitudeFormatter() ax.xaxis.set_major_formatter(lon_formatter) ax.yaxis.set_major_formatter(lat_formatter) plt.title('GDP TEST') plt.savefig("gdb.png") plt.show() def run_excel(): if os.path.exists("SURF_CHN_MUL_HOR_STATION.xlsx"): read_excel("SURF_CHN_MUL_HOR_STATION.xlsx") else: download_file(dataurl) read_excel("SURF_CHN_MUL_HOR_STATION.xlsx") def run_shp(): if os.path.exists("ne_10m_admin_0_countries"): gdp("ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp") else: download_file(shpurl) unzip('ne_10m_admin_0_countries.zip', "ne_10m_admin_0_countries") gdp("ne_10m_admin_0_countries/ne_10m_admin_0_countries.shp") if __name__ == '__main__': # download_file(dataurl) # download_file(shpurl) # cas = get_record('SUBREGION', 'Central Asia') # print([r.attributes['ADMIN'] for r in cas]) # read_excel('SURF_CHN_MUL_HOR_STATION.xlsx') # gdp() run_excel() run_shp()
总结
以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。如果你想了解更多相关内容请查看下面相关链接
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2024年11月27日
2024年11月27日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]