DDR爱好者之家 Design By 杰米

在进行数据操作时, 经常会碰到基于同一列进行错位相加减的操作, 即对某一列进行向上或向下平移(shift).

往常, 我们都会使用循环进行操作, 但经过查阅相关资料, 发现结合pandas里的groupby和shift两个函数就能轻松实现上述要求.

#创建样例数据
temp = pd.DataFrame({'id':[1,1,1,2,2,3],'value':[1,2,3,4,5,6]});temp
Out[1]:
  id value
0  1   1
1  1   2
2  1   3
3  2   4
4  2   5
5  3   6
temp['value_shift'] = temp.groupby('id')['value'].shift(1);temp
Out[180]: 
  id value value_shift
0  1   1     NaN
1  1   2     1.0
2  1   3     2.0
3  2   4     NaN
4  2   5     4.0
5  3   6     NaN

temp['value_shift_1'] = temp.groupby('id')['value'].shift(-1);temp
Out[181]: 
  id value value_shift value_shift_1
0  1   1     NaN      2.0
1  1   2     1.0      3.0
2  1   3     2.0      NaN
3  2   4     NaN      5.0
4  2   5     4.0      NaN
5  3   6     NaN      NaN

通过shift函数里面的值来控制向前还是向后偏移, 缺少的值会填充NaN.

groupby函数里的参数控制基于什么字段进行shift.

官方文档 这里是以index为基准.

以上这篇python对列进行平移变换的方法(shift)就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米