最近几天了解了一下人脸识别,应用场景可以是图片标注,商品图和广告图中有没有模特,有几个模特,模特的性别,年龄,颜值,表情等数据的挖掘。
基础的识别用dlib来实现,dlib是一个机器学习的包,主要用C++写的,但是也有Python版本。其中最流行的一个功能是Facial Landmark Detection, 配备已经训练好的轮廓预测模型,叫shape_predictor_68_face_landmarks.dat, 从名字就可以看出,它可以检测出面部的68个关键点,包括五官和外轮廓等。
安装dlib会花比较长时间,因为依赖包有十个左右,装完了dlib别忘了下载predictor数据文件。
wget
http://dlib.net/files/shape_predictor_68_face_landmarks.dat.bz2
pip install dlib
我在Adrian大神的代码做了一点修改和封装,先定位脸部的方框,box_face画出方框,在此基础上可选调用tag_face_number来标注脸的标号或者draw_face_landmarks来标注特征点,也可以直接调用count_faces来统计脸的个数,mark_all_faces给所有的脸把所有信息都加上。
拿九张模特图来试试,半脸的不行,侧的太厉害不行,其它都能识别出来。
一张图多张脸的也毫无压力
接下来性别和年龄就不好做了,必须通过机器训练数据,还没时间摸透,又想尽快拿到这些标注,于是先走捷径去调face++的API, 注册个账号申请key和secret即可,免费账户有qps限制,且一张照片内最多支持五人识别。
官方的代码示例极差,而且还是只支持Python2的, 收先要改写一下。Attribute中有很多数据可以拿,你想的到的想不到的都有,甚至包括颜值,人种等。颜值还算靠谱,范冰冰90分,凤姐49分,人种就难说了,欧美模特分分钟当成Asian.
机器说: 性别女,表情偏悲伤,颜值89分,28岁,亚洲人,基本没笑
{'image_id': 'wPGIyROqltTdjvRX3zopbg==', 'request_id': '1519574701,3113e37e-b000-4440-af08-871831cf1ba8', 'time_used': 355, 'faces': [{'attributes': {'emotion': {'sadness': 93.448, 'neutral': 4.114, 'disgust': 0.002, 'anger': 0.002, 'surprise': 2.414, 'fear': 0.002, 'happiness': 0.018}, 'beauty': {'female_score': 89.348, 'male_score': 88.925}, 'gender': {'value': 'Female'}, 'age': {'value': 28}, 'headpose': {'yaw_angle': 17.526142, 'pitch_angle': 11.047059, 'roll_angle': 19.623343}, 'smile': {'threshold': 30.1, 'value': 28.532}, 'ethnicity': {'value': 'Asian'}}, 'face_rectangle': {'width': 202, 'top': 103, 'left': 69, 'height': 202}, 'face_token': '7be6a72f497ed16cc7883424584052c5'}]}
机器说: 性别男,表情很快乐,颜值52分,61岁,黑人,大笑
{'image_id': 'YZ5wzeVDiAgCN9yIFX44Gw==', 'request_id': '1519574926,31f6d4d8-bdf6-4863-b29a-cf61ff04ffbe', 'time_used': 323, 'faces': [{'attributes': {'emotion': {'sadness': 0.0, 'neutral': 0.0, 'disgust': 0.0, 'anger': 0.0, 'surprise': 0.0, 'fear': 0.0, 'happiness': 99.999}, 'beauty': {'female_score': 62.678, 'male_score': 51.847}, 'gender': {'value': 'Male'}, 'age': {'value': 61}, 'headpose': {'yaw_angle': 2.6326802, 'pitch_angle': 11.909821, 'roll_angle': -11.707241}, 'smile': {'threshold': 30.1, 'value': 99.081}, 'ethnicity': {'value': 'Black'}}, 'face_rectangle': {'width': 208, 'top': 88, 'left': 120, 'height': 208}, 'face_token': '19067cf0f5358312c109a0e70bab62ae'}]}
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]