DDR爱好者之家 Design By 杰米

学习《Python3爬虫、数据清洗与可视化实战》时自己的一些实践。

DataFrame分组操作

注意分组后得到的就是Series对象了,而不再是DataFrame对象。

import pandas as pd

# 还是读取这份文件
df = pd.read_csv("E:/Data/practice/taobao_data.csv", delimiter=',', encoding='utf-8', header=0)

# 计算'成交量'按'位置'分组的平均值
grouped1 = df['成交量'].groupby(df['位置']).mean()
# print(grouped1)

Pandas中DataFrame的分组/分割/合并的实现

# 计算'成交量'先按'位置'再按'卖家'分组后的平均值
grouped2 = df['成交量'].groupby([df['位置'], df['卖家']]).mean()
# print(grouped2)

Pandas中DataFrame的分组/分割/合并的实现

# 计算先按'位置'再按'卖家'分组后的所有指标(如果可以计算平均值)的平均值
grouped3 = df.groupby([df['位置'], df['卖家']]).mean()
# print(grouped3)

Pandas中DataFrame的分组/分割/合并的实现

DataFrame数据分割和合并

这里其实可以操作得很复杂,这里是一些比较基本的用法。

import pandas as pd

# 还是读取这份文件
df = pd.read_csv("E:/Data/practice/taobao_data.csv", delimiter=',', encoding='utf-8', header=0)
# 计算销售额
df['销售额'] = df['价格'] * df['成交量']

# (1)前面学了ix,loc,iloc,这里是直接用[]运算做分割
df1 = df[30:40][['位置', '卖家']]
# print(df1) # 从30号行到39号行
df2 = df[80:90][['卖家', '销售额']]

Pandas中DataFrame的分组/分割/合并的实现

# (2)内联接操作(相当于JOIN,INNER JOIN)
df3 = pd.merge(df1, df2) # 不指定列名,默认选择列名相同的'卖家'列
# print(df3)
df4 = pd.merge(df1, df2, on='卖家') # 指定按照'卖家'相同做联接
# print(df4)

Pandas中DataFrame的分组/分割/合并的实现

# (3)全外联接操作(相当于FULL JOIN),没有值的补NaN
df5 = pd.merge(df1, df2, how='outer')
# print(df5)

Pandas中DataFrame的分组/分割/合并的实现

# (4)左外联接操作(相当于LEFT JOIN),即左边的都要,'销售额'没有就NaN
df6 = pd.merge(df1, df2, how='left')
# print(df6)

Pandas中DataFrame的分组/分割/合并的实现

# (5)右外联接操作(相当于RIGHT JOIN),即右边的都要,'位置'没有就NaN
df7 = pd.merge(df1, df2, how='right')
# print(df7)

Pandas中DataFrame的分组/分割/合并的实现

# (6)按索引相同做联接
df_a = df[:10][['位置', '卖家']]
df_b = df[3:13][['价格', '成交量']]
df_c_1 = pd.merge(df_a, df_b, left_index=True, right_index=True) # 内联接
# print(df_c_1) # 只有从3到9的

Pandas中DataFrame的分组/分割/合并的实现

df_c_2 = df_a.join(df_b) # 左外联接
# print(df_c_2) # 从0到10

Pandas中DataFrame的分组/分割/合并的实现

df_c_3 = df_b.join(df_a) # "右"外联接(其实还是左外联接,就是b在左边a在右边)
# print(df_c_3) # 从3到12

Pandas中DataFrame的分组/分割/合并的实现

# (7)轴向堆叠操作(上下堆叠时就相当于UNION ALL,默认不去重)
df8 = df[2:5][['价格']] # 注意这里只取一个列也要用[[]]
df9 = df[3:8][['销售额', '宝贝']]
df10 = df[6:11][['卖家', '位置']]
# (7.1)默认axis=0即上下堆叠,上下堆叠时,堆叠顺序和传进concat的顺序一致,最终列=所有列数去重,缺失的补NaN
# 关于axis=0需要设置sort属性的问题,还没查到有讲这个的,这个问题先留着...
df11 = pd.concat([df10, df9, df8], sort=False)
# print(df11)

Pandas中DataFrame的分组/分割/合并的实现

# (7.2)设置axis=1即左右堆叠,左右堆叠不允许索引重复,相同索引的将被合并到一行
# 左右堆叠中,堆叠顺序仅仅影响列的出现顺序
# 这很好理解,毕竟不是从上到下"摞"在一起的,而是从左到右"卡"在一起的
df12 = pd.concat([df10, df9, df8], axis=1)
df13 = pd.concat([df8, df9, df10], axis=1)
# print(df12)
# print(df13)

Pandas中DataFrame的分组/分割/合并的实现

Pandas中DataFrame的分组/分割/合并的实现

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?