最近将Pytorch程序迁移到GPU上去的一些工作和思考
环境:Ubuntu 16.04.3
Python版本:3.5.2
Pytorch版本:0.4.0
0. 序言
大家知道,在深度学习中使用GPU来对模型进行训练是可以通过并行化其计算来提高运行效率,这里就不多谈了。
最近申请到了实验室的服务器来跑程序,成功将我简陋的程序改成了“高大上”GPU版本。
看到网上总体来说少了很多介绍,这里决定将我的一些思考和工作记录下来。
1. 如何进行迁移
由于我使用的是Pytorch写的模型,网上给出了一个非常简单的转换方式: 对模型和相应的数据进行.cuda()处理。通过这种方式,我们就可以将内存中的数据复制到GPU的显存中去。从而可以通过GPU来进行运算了。
网上说的非常简单,但是实际使用过程中还是遇到了一些疑惑。下面分数据和模型两方面的迁移来进行说明介绍。
1.1 判定使用GPU
下载了对应的GPU版本的Pytorch之后,要确保GPU是可以进行使用的,通过torch.cuda.is_available()的返回值来进行判断。返回True则具有能够使用的GPU。
通过torch.cuda.device_count()可以获得能够使用的GPU数量。其他就不多赘述了。
常常通过如下判定来写可以跑在GPU和CPU上的通用模型:
if torch.cuda.is_available(): ten1 = ten1.cuda() MyModel = MyModel.cuda()
2. 对应数据的迁移
数据方面常用的主要是两种 —— Tensor和Variable。实际上这两种类型是同一个东西,因为Variable实际上只是一个容器,这里先视其不同。
2.1 将Tensor迁移到显存中去
不论是什么类型的Tensor(FloatTensor或者是LongTensor等等),一律直接使用方法.cuda()即可。
例如:
ten1 = torch.FloatTensor(2) 6.1101e+24 4.5659e-41 [torch.FloatTensor of size 2] ten1_cuda = ten1.cuda() 6.1101e+24 4.5659e-41 [torch.cuda.FloatTensor of size 2 (GPU 0)]
其数据类型会由torch.FloatTensor变为torch.cuda.FloatTensor (GPU 0)这样代表这个数据现在存储在
GPU 0的显存中了。
如果要将显存中的数据复制到内存中,则对cuda数据类型使用.cpu()方法即可。
2.2 将Variable迁移到显存中去
在模型中,我们最常使用的是Variable这个容器来装载使用数据。主要是由于Variable可以进行反向传播来进行自动求导。
同样地,要将Variable迁移到显存中,同样只需要使用.cuda()即可实现。
这里有一个小疑问,对Variable直接使用.cuda和对Tensor进行.cuda然后再放置到Variable中结果是否一致呢。答案是肯定的。
ten1 = torch.FloatTensor(2) > 6.1101e+24 4.5659e-41 [torch.FloatTensor of size 2] ten1_cuda = ten1.cuda() 6.1101e+24 4.5659e-41 [torch.cuda.FloatTensor of size 2 (GPU 0)] V1_cpu = autograd.Variable(ten1) Variable containing: 6.1101e+24 4.5659e-41 [torch.FloatTensor of size 2] V2 = autograd.Variable(ten1_cuda) Variable containing: 6.1101e+24 4.5659e-41 [torch.cuda.FloatTensor of size 2 (GPU 0)] V1 = V1_cpu.cuda() Variable containing: 6.1101e+24 4.5659e-41 [torch.cuda.FloatTensor of size 2 (GPU 0)]
最终我们能发现他们都能够达到相同的目的,但是他们完全一样了吗?我们使用V1 is V2发现,结果是否定的。
对于V1,我们是直接对Variable进行操作的,这样子V1的.grad_fn中会记录下创建的方式。因此这二者并不是完全相同的。
2.3 数据迁移小结
.cuda()操作默认使用GPU 0也就是第一张显卡来进行操作。当我们想要存储在其他显卡中时可以使用.cuda(<显卡号数>)来将数据存储在指定的显卡中。还有很多种方式,具体参考官方文档。
对于不同存储位置的变量,我们是不可以对他们直接进行计算的。存储在不同位置中的数据是不可以直接进行交互计算的。
换句话说也就是上面例子中的torch.FloatTensor是不可以直接与torch.cuda.FloatTensor进行基本运算的。位于不同GPU显存上的数据也是不能直接进行计算的。
对于Variable,其实就仅仅是一种能够记录操作信息并且能够自动求导的容器,实际上的关键信息并不在Variable本身,而更应该侧重于Variable中存储的data。
3. 模型迁移
模型的迁移这里指的是torch.nn下面的一些网络模型以及自己创建的模型迁移到GPU上去。
上面讲了使用.cuda()即可将数据从内存中移植到显存中去。
对于模型来说,也是同样的方式,我们使用.cuda来将网络放到显存上去。
3.1 torch.nn下的基本模型迁移
这里使用基本的单层感知机来进行举例(线性模型)。
data1 = torch.FloatTensor(2) data2 = data1.cuda # 创建一个输入维度为2,输出维度为2的单层神经网络 linear = torch.nn.Linear(2, 2) Linear(in_features=2, out_features=2) linear_cuda = linear.cuda() Linear(in_features=2, out_features=2)
我们很惊奇地发现对于模型来说,不像数据那样使用了.cuda()之后会改变其的数据类型。模型看起来没有任何的变化。
但是他真的没有改变吗。
我们将data1投入linear_cuda中去可以发现,系统会报错,而将.cuda之后的data2投入linear_cuda才能正常工作。并且输出的也是具有cuda的数据类型。
那是怎么一回事呢?
这是因为这些所谓的模型,其实也就是对输入参数做了一些基本的矩阵运算。所以我们对模型.cuda()实际上也相当于将模型使用到的参数存储到了显存上去。
对于上面的例子,我们可以通过观察参数来发现区别所在。
linear.weight Parameter containing: -0.6847 0.2149 -0.5473 0.6863 [torch.FloatTensor of size 2x2] linear_cuda.weight Parameter containing: -0.6847 0.2149 -0.5473 0.6863 [torch.cuda.FloatTensor of size 2x2 (GPU 0)]
3.2 自己模型的迁移
对于自己创建的模型类,由于继承了torch.nn.Module,则可同样使用.cuda()来将模型中用到的所有参数都存储到显存中去。
这里笔者曾经有一个疑问:当我们对模型存储到显存中去之后,那么这个模型中的方法后面所创建出来的Tensor是不是都会默认变成cuda的数据类型。答案是否定的。具体操作留给读者自己去实现。
3.3 模型小结
对于模型而言,我们可以将其看做是一种类似于Variable的容器。我们对它进行.cuda()处理,是将其中的参数放到显存上去(因为实际使用的时候也是通过这些参数做运算)。
4. 总结
Pytorch使用起来直接简单,GPU的使用也是简单明了。然而对于多GPU和CPU的协同使用则还是有待提高。
以上这篇将Pytorch模型从CPU转换成GPU的实现方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]