训练好了model后,可以通过python调用caffe的模型,然后进行模型测试的输出。
本次测试主要依靠的模型是在caffe模型里面自带训练好的结构参数:~/caffe/models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel,以及结构参数
:~/caffe/models/bvlc_reference_caffenet/deploy.prototxt相结合,用python接口进行调用。
训练的源代码以及相应的注释如下所示:
# -*- coding: UTF-8 -*- import os import caffe import numpy as np root='/home/zf/caffe/'#指定根目录 deploy=root+'models/bvlc_reference_caffenet/deploy.prototxt'#结构文件 caffe_model=root + 'models/bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel' #已经训练好的model dir =root+'examples/images/'#保存测试图片的集合 filelist=[] filenames=os.listdir(dir) for fn in filenames: fullfilename = os.path.join(dir,fn) filelist.append(fullfilename) #filelist.append(fn) def Test(img): #加载模型 net = caffe.Net(deploy,caffe_model,caffe.TEST) # 加载输入和配置预处理 transformer = caffe.io.Transformer({'data':net.blobs['data'].data.shape}) transformer.set_mean('data', np.load('/home/zf/caffe/python/caffe/imagenet/ilsvrc_2012_mean.npy').mean(1).mean(1)) transformer.set_transpose('data', (2,0,1)) transformer.set_channel_swap('data', (2,1,0)) transformer.set_raw_scale('data', 255.0) #注意可以调节预处理批次的大小 #由于是处理一张图片,所以把原来的10张的批次改为1 net.blobs['data'].reshape(1,3,227,227) #加载图片到数据层 im = caffe.io.load_image(img) net.blobs['data'].data[...] = transformer.preprocess('data', im) #前向计算 out = net.forward() # 其他可能的形式 : out = net.forward_all(data=np.asarray([transformer.preprocess('data', im)])) #预测分类 print out['prob'].argmax() #打印预测标签 labels = np.loadtxt("/home/zf/caffe/data/ilsvrc12/synset_words.txt", str, delimiter='\t') top_k = net.blobs['prob'].data[0].flatten().argsort()[-1] print 'the class is:',labels[top_k] f=file("/home/zhengfeng/caffe/examples/zf/label.txt","a") f.writelines(img+' '+labels[top_k]+'\n') labels_filename=root +'data/ilsvrc12/synset_words.txt' #循环遍历文件夹root+'examples/images/'下的所有图片 for i in range(0,len(filelist)): img=filelist[i] Test(img)
ps:主要有以下的文件需要说明
待测试的文件夹里面的图片数据为:
最后的输出结果如下:
以下是本人定义的label.txt文件写入的预测的数据:
如果在编译的时候出现import caffe error的话,说明没有导入caffe
Export PYTHONPATH=$PYTHONPATH:/home/zf/caffe/python,如果还是不行,可能是你的caffe的python接口未编译,cd /home/zf/caffe,然后执行make pycaffe,接着再测试。
以上这篇python接口调用已训练好的caffe模型测试分类方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]