DDR爱好者之家 Design By 杰米

线性回归在整个财务中广泛应用于众多应用程序中。在之前的教程中,我们使用普通最小二乘法(OLS)计算了公司的beta与相对索引的比较。现在,我们将使用线性回归来估计股票价格。

线性回归是一种用于模拟因变量(y)和自变量(x)之间关系的方法。通过简单的线性回归,只有一个自变量x。可能有许多独立变量属于多元线性回归的范畴。在这种情况下,我们只有一个自变量即日期。对于第一个日期上升到日期向量长度的整数,该日期将由1开始的整数表示,该日期可以根据时间序列数据而变化。当然,我们的因变量将是股票的价格。为了理解线性回归,您必须了解您可能在学校早期学到的相当基本的等式。

y = a + bx

  • Y =预测值或因变量
  • b =线的斜率
  • x =系数或自变量
  • a = y截距

从本质上讲,这将构成我们对数据的最佳拟合。在OLS过程中通过数据集绘制了大量线条。该过程的目标是找到最佳拟合线,最小化平方误差和(SSE)与股票价格(y)的实际值以及我们在数据集中所有点的预测股票价格。这由下图表示。对于绘制的每条线,数据集中的每个点与模型输出的相应预测值之间存在差异。将这些差异中的每一个加起来并平方以产生平方和。从列表中,我们采用最小值导致我们的最佳匹配线。考虑下图:

python用线性回归预测股票价格的实现代码

第一部分:获取数据:

from matplotlib import style
 
from sklearn.linear_model import LinearRegression
 
from sklearn.model_selection import train_test_split
 
import quandl
 
import datetime
 
style.use('ggplot')
 
#Dates
 
start_date = datetime.date(2017,1,3)
 
t_date=start_date, end_date=end_date, collapse="daily")
 
df = df.reset_index()
 
prices = np.reshape(prices, (len(prices), 1))

第二部分:创建一个回归对象:

', linewidth=3, label = 'Predicted Price') #plotting the line made by linear regression
 
plt.title('Linear Regression | Time vs. Price')
 
plt.legend()
 
predicted_price =regressor.predict(date)

输出:

python用线性回归预测股票价格的实现代码

预测日期输入价格:

创建训练/测试集

et
 
xtrain, x , ytrain)
 
#Train
 
plt.title('Linear Regression | Time vs. Price')
 
#Test Set Graph
 
plt.scatter(xtest, ytest, color='yellow', label= 'Actual Price') #plotting the initial datapoints
 
plt.plot(xtest, regressor.predict(xtest), color='blue', linewidth=3, label = 'Predicted Price') #plotting
 
plt.show()

输出:

python用线性回归预测股票价格的实现代码

测试集:

python用线性回归预测股票价格的实现代码

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米

稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!

昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。

这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。

而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?