Pandas使用这些函数处理缺失值:
- isnull和notnull:检测是否是空值,可用于df和series
- dropna:丢弃、删除缺失值
- axis : 删除行还是列,{0 or ‘index', 1 or ‘columns'}, default 0
- how : 如果等于any则任何值为空都删除,如果等于all则所有值都为空才删除
- inplace : 如果为True则修改当前df,否则返回新的df
- fillna:填充空值
- value:用于填充的值,可以是单个值,或者字典(key是列名,value是值)
- method : 等于ffill使用前一个不为空的值填充forword fill;等于bfill使用后一个不为空的值填充backword fill
- axis : 按行还是列填充,{0 or ‘index', 1 or ‘columns'}
- inplace : 如果为True则修改当前df,否则返回新的df
import pandas as pd
实例:特殊Excel的读取、清洗、处理
步骤1:读取excel的时候,忽略前几个空行
studf = pd.read_excel("./datas/student_excel/student_excel.xlsx", skiprows=2)
studf
Unnamed: 0
姓名
科目
分数
0
NaN
小明
语文
85.0
1
NaN
NaN
数学
80.0
2
NaN
NaN
英语
90.0
3
NaN
NaN
NaN
NaN
4
NaN
小王
语文
85.0
5
NaN
NaN
数学
NaN
6
NaN
NaN
英语
90.0
7
NaN
NaN
NaN
NaN
8
NaN
小刚
语文
85.0
9
NaN
NaN
数学
80.0
10
NaN
NaN
英语
90.0
步骤2:检测空值
studf.isnull()
Unnamed: 0
姓名
科目
分数
0
True
False
False
False
1
True
True
False
False
2
True
True
False
False
3
True
True
True
True
4
True
False
False
False
5
True
True
False
True
6
True
True
False
False
7
True
True
True
True
8
True
False
False
False
9
True
True
False
False
10
True
True
False
False
studf["分数"].isnull()
0 False 1 False 2 False 3 True 4 False 5 True 6 False 7 True 8 False 9 False 10 False Name: 分数, dtype: bool
studf["分数"].notnull()
0 True 1 True 2 True 3 False 4 True 5 False 6 True 7 False 8 True 9 True 10 True Name: 分数, dtype: bool
# 筛选没有空分数的所有行 studf.loc[studf["分数"].notnull(), :]
Unnamed: 0
姓名
科目
分数
0
NaN
小明
语文
85.0
1
NaN
NaN
数学
80.0
2
NaN
NaN
英语
90.0
4
NaN
小王
语文
85.0
6
NaN
NaN
英语
90.0
8
NaN
小刚
语文
85.0
9
NaN
NaN
数学
80.0
10
NaN
NaN
英语
90.0
步骤3:删除掉全是空值的列
studf.dropna(axis="columns", how='all', inplace=True)
studf
姓名
科目
分数
0
小明
语文
85.0
1
NaN
数学
80.0
2
NaN
英语
90.0
3
NaN
NaN
NaN
4
小王
语文
85.0
5
NaN
数学
NaN
6
NaN
英语
90.0
7
NaN
NaN
NaN
8
小刚
语文
85.0
9
NaN
数学
80.0
10
NaN
英语
90.0
步骤4:删除掉全是空值的行
studf.dropna(axis="index", how='all', inplace=True)
studf
姓名
科目
分数
0
小明
语文
85.0
1
NaN
数学
80.0
2
NaN
英语
90.0
4
小王
语文
85.0
5
NaN
数学
NaN
6
NaN
英语
90.0
8
小刚
语文
85.0
9
NaN
数学
80.0
10
NaN
英语
90.0
步骤5:将分数列为空的填充为0分
studf.fillna({"分数":0})
姓名
科目
分数
0
小明
语文
85.0
1
NaN
数学
80.0
2
NaN
英语
90.0
4
小王
语文
85.0
5
NaN
数学
0.0
6
NaN
英语
90.0
8
小刚
语文
85.0
9
NaN
数学
80.0
10
NaN
英语
90.0
# 等同于 studf.loc[:, '分数'] = studf['分数'].fillna(0)
studf
姓名
科目
分数
0
小明
语文
85.0
1
NaN
数学
80.0
2
NaN
英语
90.0
4
小王
语文
85.0
5
NaN
数学
0.0
6
NaN
英语
90.0
8
小刚
语文
85.0
9
NaN
数学
80.0
10
NaN
英语
90.0
步骤6:将姓名的缺失值填充
使用前面的有效值填充,用ffill:forward fill
studf.loc[:, '姓名'] = studf['姓名'].fillna(method="ffill")
studf
姓名
科目
分数
0
小明
语文
85.0
1
小明
数学
80.0
2
小明
英语
90.0
4
小王
语文
85.0
5
小王
数学
0.0
6
小王
英语
90.0
8
小刚
语文
85.0
9
小刚
数学
80.0
10
小刚
英语
90.0
步骤7:将清洗好的excel保存
studf.to_excel("./datas/student_excel/student_excel_clean.xlsx", index=False)
总结
以上就是我在处理客户端真实IP的方法,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对的支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]