DDR爱好者之家 Design By 杰米
BP神经网络是最简单的神经网络模型了,三层能够模拟非线性函数效果。
难点:
- 如何确定初始化参数?
- 如何确定隐含层节点数量?
- 迭代多少次?如何更快收敛?
- 如何获得全局最优解?
'''
neural networks
created on 2019.9.24
author: vince
'''
import math
import logging
import numpy
import random
import matplotlib.pyplot as plt
'''
neural network
'''
class NeuralNetwork:
def __init__(self, layer_nums, iter_num = 10000, batch_size = 1):
self.__ILI = 0;
self.__HLI = 1;
self.__OLI = 2;
self.__TLN = 3;
if len(layer_nums) != self.__TLN:
raise Exception("layer_nums length must be 3");
self.__layer_nums = layer_nums; #array [layer0_num, layer1_num ...layerN_num]
self.__iter_num = iter_num;
self.__batch_size = batch_size;
def train(self, X, Y):
X = numpy.array(X);
Y = numpy.array(Y);
self.L = [];
#initialize parameters
self.__weight = [];
self.__bias = [];
self.__step_len = [];
for layer_index in range(1, self.__TLN):
self.__weight.append(numpy.random.rand(self.__layer_nums[layer_index - 1], self.__layer_nums[layer_index]) * 2 - 1.0);
self.__bias.append(numpy.random.rand(self.__layer_nums[layer_index]) * 2 - 1.0);
self.__step_len.append(0.3);
logging.info("bias:%s" % (self.__bias));
logging.info("weight:%s" % (self.__weight));
for iter_index in range(self.__iter_num):
sample_index = random.randint(0, len(X) - 1);
logging.debug("-----round:%s, select sample %s-----" % (iter_index, sample_index));
output = self.forward_pass(X[sample_index]);
g = (-output[2] + Y[sample_index]) * self.activation_drive(output[2]);
logging.debug("g:%s" % (g));
for j in range(len(output[1])):
self.__weight[1][j] += self.__step_len[1] * g * output[1][j];
self.__bias[1] -= self.__step_len[1] * g;
e = [];
for i in range(self.__layer_nums[self.__HLI]):
e.append(numpy.dot(g, self.__weight[1][i]) * self.activation_drive(output[1][i]));
e = numpy.array(e);
logging.debug("e:%s" % (e));
for j in range(len(output[0])):
self.__weight[0][j] += self.__step_len[0] * e * output[0][j];
self.__bias[0] -= self.__step_len[0] * e;
l = 0;
for i in range(len(X)):
predictions = self.forward_pass(X[i])[2];
l += 0.5 * numpy.sum((predictions - Y[i]) ** 2);
l /= len(X);
self.L.append(l);
logging.debug("bias:%s" % (self.__bias));
logging.debug("weight:%s" % (self.__weight));
logging.debug("loss:%s" % (l));
logging.info("bias:%s" % (self.__bias));
logging.info("weight:%s" % (self.__weight));
logging.info("L:%s" % (self.L));
def activation(self, z):
return (1.0 / (1.0 + numpy.exp(-z)));
def activation_drive(self, y):
return y * (1.0 - y);
def forward_pass(self, x):
data = numpy.copy(x);
result = [];
result.append(data);
for layer_index in range(self.__TLN - 1):
data = self.activation(numpy.dot(data, self.__weight[layer_index]) - self.__bias[layer_index]);
result.append(data);
return numpy.array(result);
def predict(self, x):
return self.forward_pass(x)[self.__OLI];
def main():
logging.basicConfig(level = logging.INFO,
format = '%(asctime)s %(filename)s[line:%(lineno)d] %(levelname)s %(message)s',
datefmt = '%a, %d %b %Y %H:%M:%S');
logging.info("trainning begin.");
nn = NeuralNetwork([2, 2, 1]);
X = numpy.array([[0, 0], [1, 0], [1, 1], [0, 1]]);
Y = numpy.array([0, 1, 0, 1]);
nn.train(X, Y);
logging.info("trainning end. predict begin.");
for x in X:
print(x, nn.predict(x));
plt.plot(nn.L)
plt.show();
if __name__ == "__main__":
main();
具体收敛效果
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
P70系列延期,华为新旗舰将在下月发布
3月20日消息,近期博主@数码闲聊站 透露,原定三月份发布的华为新旗舰P70系列延期发布,预计4月份上市。
而博主@定焦数码 爆料,华为的P70系列在定位上已经超过了Mate60,成为了重要的旗舰系列之一。它肩负着重返影像领域顶尖的使命。那么这次P70会带来哪些令人惊艳的创新呢?
根据目前爆料的消息来看,华为P70系列将推出三个版本,其中P70和P70 Pro采用了三角形的摄像头模组设计,而P70 Art则采用了与上一代P60 Art相似的不规则形状设计。这样的外观是否好看见仁见智,但辨识度绝对拉满。
更新日志
2025年11月06日
2025年11月06日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]

