一、项目概述
本次项目目标是实现对自动生成的带有各种噪声的车牌识别。在噪声干扰情况下,车牌字符分割较困难,此次车牌识别是将车牌7个字符同时训练,字符包括31个省份简称、10个阿拉伯数字、24个英文字母('O'和'I'除外),共有65个类别,7个字符使用单独的loss函数进行训练。
(运行环境:tensorflow1.14.0-GPU版)
二、生成车牌数据集
import os import cv2 as cv import numpy as np from math import * from PIL import ImageFont from PIL import Image from PIL import ImageDraw index = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9, "苏": 10, "浙": 11, "皖": 12, "闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19, "桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24, "藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29, "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36, "6": 37, "7": 38, "8": 39, "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48, "J": 49, "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59, "V": 60, "W": 61, "X": 62, "Y": 63, "Z": 64} chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"] def AddSmudginess(img, Smu): """ 模糊处理 :param img: 输入图像 :param Smu: 模糊图像 :return: 添加模糊后的图像 """ rows = r(Smu.shape[0] - 50) cols = r(Smu.shape[1] - 50) adder = Smu[rows:rows + 50, cols:cols + 50] adder = cv.resize(adder, (50, 50)) img = cv.resize(img,(50,50)) img = cv.bitwise_not(img) img = cv.bitwise_and(adder, img) img = cv.bitwise_not(img) return img def rot(img, angel, shape, max_angel): """ 添加透视畸变 """ size_o = [shape[1], shape[0]] size = (shape[1]+ int(shape[0] * cos((float(max_angel ) / 180) * 3.14)), shape[0]) interval = abs(int(sin((float(angel) / 180) * 3.14) * shape[0])) pts1 = np.float32([[0, 0], [0, size_o[1]], [size_o[0], 0], [size_o[0], size_o[1]]]) if angel > 0: pts2 = np.float32([[interval, 0], [0, size[1]], [size[0], 0], [size[0] - interval, size_o[1]]]) else: pts2 = np.float32([[0, 0], [interval, size[1]], [size[0] - interval, 0], [size[0], size_o[1]]]) M = cv.getPerspectiveTransform(pts1, pts2) dst = cv.warpPerspective(img, M, size) return dst def rotRandrom(img, factor, size): """ 添加放射畸变 :param img: 输入图像 :param factor: 畸变的参数 :param size: 图片目标尺寸 :return: 放射畸变后的图像 """ shape = size pts1 = np.float32([[0, 0], [0, shape[0]], [shape[1], 0], [shape[1], shape[0]]]) pts2 = np.float32([[r(factor), r(factor)], [r(factor), shape[0] - r(factor)], [shape[1] - r(factor), r(factor)], [shape[1] - r(factor), shape[0] - r(factor)]]) M = cv.getPerspectiveTransform(pts1, pts2) dst = cv.warpPerspective(img, M, size) return dst def tfactor(img): """ 添加饱和度光照的噪声 """ hsv = cv.cvtColor(img,cv.COLOR_BGR2HSV) hsv[:, :, 0] = hsv[:, :, 0] * (0.8 + np.random.random() * 0.2) hsv[:, :, 1] = hsv[:, :, 1] * (0.3 + np.random.random() * 0.7) hsv[:, :, 2] = hsv[:, :, 2] * (0.2 + np.random.random() * 0.8) img = cv.cvtColor(hsv, cv.COLOR_HSV2BGR) return img def random_envirment(img, noplate_bg): """ 添加自然环境的噪声, noplate_bg为不含车牌的背景图 """ bg_index = r(len(noplate_bg)) env = cv.imread(noplate_bg[bg_index]) env = cv.resize(env, (img.shape[1], img.shape[0])) bak = (img == 0) bak = bak.astype(np.uint8) * 255 inv = cv.bitwise_and(bak, env) img = cv.bitwise_or(inv, img) return img def GenCh(f, val): """ 生成中文字符 """ img = Image.new("RGB", (45, 70), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((0, 3), val, (0, 0, 0), font=f) img = img.resize((23, 70)) A = np.array(img) return A def GenCh1(f, val): """ 生成英文字符 """ img =Image.new("RGB", (23, 70), (255, 255, 255)) draw = ImageDraw.Draw(img) draw.text((0, 2), val, (0, 0, 0), font=f) # val.decode('utf-8') A = np.array(img) return A def AddGauss(img, level): """ 添加高斯模糊 """ return cv.blur(img, (level * 2 + 1, level * 2 + 1)) def r(val): return int(np.random.random() * val) def AddNoiseSingleChannel(single): """ 添加高斯噪声 """ diff = 255 - single.max() noise = np.random.normal(0, 1 + r(6), single.shape) noise = (noise - noise.min()) / (noise.max() - noise.min()) noise *= diff # noise= noise.astype(np.uint8) dst = single + noise return dst def addNoise(img): # sdev = 0.5,avg=10 img[:, :, 0] = AddNoiseSingleChannel(img[:, :, 0]) img[:, :, 1] = AddNoiseSingleChannel(img[:, :, 1]) img[:, :, 2] = AddNoiseSingleChannel(img[:, :, 2]) return img class GenPlate: def __init__(self, fontCh, fontEng, NoPlates): self.fontC = ImageFont.truetype(fontCh, 43, 0) self.fontE = ImageFont.truetype(fontEng, 60, 0) self.img = np.array(Image.new("RGB", (226, 70),(255, 255, 255))) self.bg = cv.resize(cv.imread("data\\images\\template.bmp"), (226, 70)) # template.bmp:车牌背景图 self.smu = cv.imread("data\\images\\smu2.jpg") # smu2.jpg:模糊图像 self.noplates_path = [] for parent, parent_folder, filenames in os.walk(NoPlates): for filename in filenames: path = parent + "\\" + filename self.noplates_path.append(path) def draw(self, val): offset = 2 self.img[0:70, offset+8:offset+8+23] = GenCh(self.fontC, val[0]) self.img[0:70, offset+8+23+6:offset+8+23+6+23] = GenCh1(self.fontE, val[1]) for i in range(5): base = offset + 8 + 23 + 6 + 23 + 17 + i * 23 + i * 6 self.img[0:70, base:base+23] = GenCh1(self.fontE, val[i+2]) return self.img def generate(self, text): if len(text) == 7: fg = self.draw(text) # decode(encoding="utf-8") fg = cv.bitwise_not(fg) com = cv.bitwise_or(fg, self.bg) com = rot(com, r(60)-30, com.shape,30) com = rotRandrom(com, 10, (com.shape[1], com.shape[0])) com = tfactor(com) com = random_envirment(com, self.noplates_path) com = AddGauss(com, 1+r(4)) com = addNoise(com) return com @staticmethod def genPlateString(pos, val): """ 生成车牌string,存为图片 生成车牌list,存为label """ plateStr = "" plateList=[] box = [0, 0, 0, 0, 0, 0, 0] if pos != -1: box[pos] = 1 for unit, cpos in zip(box, range(len(box))): if unit == 1: plateStr += val plateList.append(val) else: if cpos == 0: plateStr += chars[r(31)] plateList.append(plateStr) elif cpos == 1: plateStr += chars[41 + r(24)] plateList.append(plateStr) else: plateStr += chars[31 + r(34)] plateList.append(plateStr) plate = [plateList[0]] b = [plateList[i][-1] for i in range(len(plateList))] plate.extend(b[1:7]) return plateStr, plate @staticmethod def genBatch(batchsize, outputPath, size): """ 将生成的车牌图片写入文件夹,对应的label写入label.txt :param batchsize: 批次大小 :param outputPath: 输出图像的保存路径 :param size: 输出图像的尺寸 :return: None """ if not os.path.exists(outputPath): os.mkdir(outputPath) outfile = open('data\\plate\\label.txt', 'w', encoding='utf-8') for i in range(batchsize): plateStr, plate = G.genPlateString(-1, -1) # print(plateStr, plate) img = G.generate(plateStr) img = cv.resize(img, size) cv.imwrite(outputPath + "\\" + str(i).zfill(2) + ".jpg", img) outfile.write(str(plate) + "\n") if __name__ == '__main__': G = GenPlate("data\\font\\platech.ttf", 'data\\font\\platechar.ttf', "data\\NoPlates") G.genBatch(101, 'data\\plate', (272, 72))
生成的车牌图像尺寸尽量不要超过300,本次尺寸选取:272 * 72
生成车牌所需文件:
- 字体文件:中文‘platech.ttf',英文及数字‘platechar.ttf'
- 背景图:来源于不含车牌的车辆裁剪图片
- 车牌(蓝底):template.bmp
- 噪声图像:smu2.jpg
车牌生成后保存至plate文件夹,示例如下:
三、数据导入
from genplate import * import matplotlib.pyplot as plt # 产生用于训练的数据 class OCRIter: def __init__(self, batch_size, width, height): super(OCRIter, self).__init__() self.genplate = GenPlate("data\\font\\platech.ttf", 'data\\font\\platechar.ttf', "data\\NoPlates") self.batch_size = batch_size self.height = height self.width = width def iter(self): data = [] label = [] for i in range(self.batch_size): img, num = self.gen_sample(self.genplate, self.width, self.height) data.append(img) label.append(num) return np.array(data), np.array(label) @staticmethod def rand_range(lo, hi): return lo + r(hi - lo) def gen_rand(self): name = "" label = list([]) label.append(self.rand_range(0, 31)) #产生车牌开头32个省的标签 label.append(self.rand_range(41, 65)) #产生车牌第二个字母的标签 for i in range(5): label.append(self.rand_range(31, 65)) #产生车牌后续5个字母的标签 name += chars[label[0]] name += chars[label[1]] for i in range(5): name += chars[label[i+2]] return name, label def gen_sample(self, genplate, width, height): num, label = self.gen_rand() img = genplate.generate(num) img = cv.resize(img, (height, width)) img = np.multiply(img, 1/255.0) return img, label #返回的label为标签,img为车牌图像 ''' # 测试代码 O = OCRIter(2, 272, 72) img, lbl = O.iter() for im in img: plt.imshow(im, cmap='gray') plt.show() print(img.shape) print(lbl) '''
四、CNN模型构建
import tensorflow as tf def cnn_inference(images, keep_prob): W_conv = { 'conv1': tf.Variable(tf.random.truncated_normal([3, 3, 3, 32], stddev=0.1)), 'conv2': tf.Variable(tf.random.truncated_normal([3, 3, 32, 32], stddev=0.1)), 'conv3': tf.Variable(tf.random.truncated_normal([3, 3, 32, 64], stddev=0.1)), 'conv4': tf.Variable(tf.random.truncated_normal([3, 3, 64, 64], stddev=0.1)), 'conv5': tf.Variable(tf.random.truncated_normal([3, 3, 64, 128], stddev=0.1)), 'conv6': tf.Variable(tf.random.truncated_normal([3, 3, 128, 128], stddev=0.1)), 'fc1_1': tf.Variable(tf.random.truncated_normal([5*30*128, 65], stddev=0.01)), 'fc1_2': tf.Variable(tf.random.truncated_normal([5*30*128, 65], stddev=0.01)), 'fc1_3': tf.Variable(tf.random.truncated_normal([5*30*128, 65], stddev=0.01)), 'fc1_4': tf.Variable(tf.random.truncated_normal([5*30*128, 65], stddev=0.01)), 'fc1_5': tf.Variable(tf.random.truncated_normal([5*30*128, 65], stddev=0.01)), 'fc1_6': tf.Variable(tf.random.truncated_normal([5*30*128, 65], stddev=0.01)), 'fc1_7': tf.Variable(tf.random.truncated_normal([5*30*128, 65], stddev=0.01)), } b_conv = { 'conv1': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[32])), 'conv2': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[32])), 'conv3': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[64])), 'conv4': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[64])), 'conv5': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[128])), 'conv6': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[128])), 'fc1_1': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[65])), 'fc1_2': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[65])), 'fc1_3': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[65])), 'fc1_4': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[65])), 'fc1_5': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[65])), 'fc1_6': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[65])), 'fc1_7': tf.Variable(tf.constant(0.1, dtype=tf.float32, shape=[65])), } # 第1层卷积层 conv1 = tf.nn.conv2d(images, W_conv['conv1'], strides=[1,1,1,1], padding='VALID') conv1 = tf.nn.bias_add(conv1, b_conv['conv1']) conv1 = tf.nn.relu(conv1) # 第2层卷积层 conv2 = tf.nn.conv2d(conv1, W_conv['conv2'], strides=[1,1,1,1], padding='VALID') conv2 = tf.nn.bias_add(conv2, b_conv['conv2']) conv2 = tf.nn.relu(conv2) # 第1层池化层 pool1 = tf.nn.max_pool2d(conv2, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') # 第3层卷积层 conv3 = tf.nn.conv2d(pool1, W_conv['conv3'], strides=[1,1,1,1], padding='VALID') conv3 = tf.nn.bias_add(conv3, b_conv['conv3']) conv3 = tf.nn.relu(conv3) # 第4层卷积层 conv4 = tf.nn.conv2d(conv3, W_conv['conv4'], strides=[1,1,1,1], padding='VALID') conv4 = tf.nn.bias_add(conv4, b_conv['conv4']) conv4 = tf.nn.relu(conv4) # 第2层池化层 pool2 = tf.nn.max_pool2d(conv4, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') # 第5层卷积层 conv5 = tf.nn.conv2d(pool2, W_conv['conv5'], strides=[1,1,1,1], padding='VALID') conv5 = tf.nn.bias_add(conv5, b_conv['conv5']) conv5 = tf.nn.relu(conv5) # 第4层卷积层 conv6 = tf.nn.conv2d(conv5, W_conv['conv6'], strides=[1,1,1,1], padding='VALID') conv6 = tf.nn.bias_add(conv6, b_conv['conv6']) conv6 = tf.nn.relu(conv6) # 第3层池化层 pool3 = tf.nn.max_pool2d(conv6, ksize=[1,2,2,1], strides=[1,2,2,1], padding='VALID') #第1_1层全连接层 # print(pool3.shape) reshape = tf.reshape(pool3, [-1, 5 * 30 * 128]) fc1 = tf.nn.dropout(reshape, keep_prob) fc1_1 = tf.add(tf.matmul(fc1, W_conv['fc1_1']), b_conv['fc1_1']) #第1_2层全连接层 fc1_2 = tf.add(tf.matmul(fc1, W_conv['fc1_2']), b_conv['fc1_2']) #第1_3层全连接层 fc1_3 = tf.add(tf.matmul(fc1, W_conv['fc1_3']), b_conv['fc1_3']) #第1_4层全连接层 fc1_4 = tf.add(tf.matmul(fc1, W_conv['fc1_4']), b_conv['fc1_4']) #第1_5层全连接层 fc1_5 = tf.add(tf.matmul(fc1, W_conv['fc1_5']), b_conv['fc1_5']) #第1_6层全连接层 fc1_6 = tf.add(tf.matmul(fc1, W_conv['fc1_6']), b_conv['fc1_6']) #第1_7层全连接层 fc1_7 = tf.add(tf.matmul(fc1, W_conv['fc1_7']), b_conv['fc1_7']) return fc1_1, fc1_2, fc1_3, fc1_4, fc1_5, fc1_6, fc1_7 def calc_loss(logit1, logit2, logit3, logit4, logit5, logit6, logit7, labels): labels = tf.convert_to_tensor(labels, tf.int32) loss1 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logit1, labels=labels[:, 0])) tf.compat.v1.summary.scalar('loss1', loss1) loss2 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logit2, labels=labels[:, 1])) tf.compat.v1.summary.scalar('loss2', loss2) loss3 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logit3, labels=labels[:, 2])) tf.compat.v1.summary.scalar('loss3', loss3) loss4 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logit4, labels=labels[:, 3])) tf.compat.v1.summary.scalar('loss4', loss4) loss5 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logit5, labels=labels[:, 4])) tf.compat.v1.summary.scalar('loss5', loss5) loss6 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logit6, labels=labels[:, 5])) tf.compat.v1.summary.scalar('loss6', loss6) loss7 = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logit7, labels=labels[:, 6])) tf.compat.v1.summary.scalar('loss7', loss7) return loss1, loss2, loss3, loss4, loss5, loss6, loss7 def train_step(loss1, loss2, loss3, loss4, loss5, loss6, loss7, learning_rate): optimizer1 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate) train_op1 = optimizer1.minimize(loss1) optimizer2 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate) train_op2 = optimizer2.minimize(loss2) optimizer3 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate) train_op3 = optimizer3.minimize(loss3) optimizer4 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate) train_op4 = optimizer4.minimize(loss4) optimizer5 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate) train_op5 = optimizer5.minimize(loss5) optimizer6 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate) train_op6 = optimizer6.minimize(loss6) optimizer7 = tf.compat.v1.train.AdamOptimizer(learning_rate=learning_rate) train_op7 = optimizer7.minimize(loss7) return train_op1, train_op2, train_op3, train_op4, train_op5, train_op6, train_op7 def pred_model(logit1, logit2, logit3, logit4, logit5, logit6, logit7, labels): labels = tf.convert_to_tensor(labels, tf.int32) labels = tf.reshape(tf.transpose(labels), [-1]) logits = tf.concat([logit1, logit2, logit3, logit4, logit5, logit6, logit7], 0) prediction = tf.nn.in_top_k(logits, labels, 1) accuracy = tf.reduce_mean(tf.cast(prediction, tf.float32)) tf.compat.v1.summary.scalar('accuracy', accuracy) return accuracy
五、模型训练
import os import time import datetime import numpy as np import tensorflow as tf from input_data import OCRIter import model os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3' img_h = 72 img_w = 272 num_label = 7 batch_size = 32 epoch = 10000 learning_rate = 0.0001 logs_path = 'logs\\1005' model_path = 'saved_model\\1005' image_holder = tf.compat.v1.placeholder(tf.float32, [batch_size, img_h, img_w, 3]) label_holder = tf.compat.v1.placeholder(tf.int32, [batch_size, 7]) keep_prob = tf.compat.v1.placeholder(tf.float32) def get_batch(): data_batch = OCRIter(batch_size, img_h, img_w) image_batch, label_batch = data_batch.iter() return np.array(image_batch), np.array(label_batch) logit1, logit2, logit3, logit4, logit5, logit6, logit7 = model.cnn_inference( image_holder, keep_prob) loss1, loss2, loss3, loss4, loss5, loss6, loss7 = model.calc_loss( logit1, logit2, logit3, logit4, logit5, logit6, logit7, label_holder) train_op1, train_op2, train_op3, train_op4, train_op5, train_op6, train_op7 = model.train_step( loss1, loss2, loss3, loss4, loss5, loss6, loss7, learning_rate) accuracy = model.pred_model(logit1, logit2, logit3, logit4, logit5, logit6, logit7, label_holder) input_image=tf.compat.v1.summary.image('input', image_holder) summary_op = tf.compat.v1.summary.merge(tf.compat.v1.get_collection(tf.compat.v1.GraphKeys.SUMMARIES)) init_op = tf.compat.v1.global_variables_initializer() with tf.compat.v1.Session() as sess: sess.run(init_op) train_writer = tf.compat.v1.summary.FileWriter(logs_path, sess.graph) saver = tf.compat.v1.train.Saver() start_time1 = time.time() for step in range(epoch): # 生成车牌图像以及标签数据 img_batch, lbl_batch = get_batch() start_time2 = time.time() time_str = datetime.datetime.now().isoformat() feed_dict = {image_holder:img_batch, label_holder:lbl_batch, keep_prob:0.6} _1, _2, _3, _4, _5, _6, _7, ls1, ls2, ls3, ls4, ls5, ls6, ls7, acc = sess.run( [train_op1, train_op2, train_op3, train_op4, train_op5, train_op6, train_op7, loss1, loss2, loss3, loss4, loss5, loss6, loss7, accuracy], feed_dict) summary_str = sess.run(summary_op, feed_dict) train_writer.add_summary(summary_str,step) duration = time.time() - start_time2 loss_total = ls1 + ls2 + ls3 + ls4 + ls5 + ls6 + ls7 if step % 10 == 0: sec_per_batch = float(duration) print('%s: Step %d, loss_total = %.2f, acc = %.2f%%, sec/batch = %.2f' % (time_str, step, loss_total, acc * 100, sec_per_batch)) if step % 5000 == 0 or (step + 1) == epoch: checkpoint_path = os.path.join(model_path,'model.ckpt') saver.save(sess, checkpoint_path, global_step=step) end_time = time.time() print("Training over. It costs {:.2f} minutes".format((end_time - start_time1) / 60))
六、训练结果展示
训练参数:
batch_size = 32
epoch = 10000
learning_rate = 0.0001
在tensorboard中查看训练过程
accuracy :
曲线在epoch = 10000左右时达到收敛,最终精确度在94%左右
以上三张分别是loss1,loss2, loss7的曲线图像,一号位字符是省份简称,识别相对字母数字较难,loss1=0.08左右,二号位字符是字母,loss2稳定在0.001左右,但是随着字符往后,loss值也将越来越大,7号位字符loss7稳定在0.6左右。
七、预测单张车牌
import os import cv2 as cv import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from PIL import Image import model os.environ["TF_CPP_MIN_LOG_LEVEL"] = '3' # 只显示 Error index = {"京": 0, "沪": 1, "津": 2, "渝": 3, "冀": 4, "晋": 5, "蒙": 6, "辽": 7, "吉": 8, "黑": 9, "苏": 10, "浙": 11, "皖": 12, "闽": 13, "赣": 14, "鲁": 15, "豫": 16, "鄂": 17, "湘": 18, "粤": 19, "桂": 20, "琼": 21, "川": 22, "贵": 23, "云": 24, "藏": 25, "陕": 26, "甘": 27, "青": 28, "宁": 29, "新": 30, "0": 31, "1": 32, "2": 33, "3": 34, "4": 35, "5": 36, "6": 37, "7": 38, "8": 39, "9": 40, "A": 41, "B": 42, "C": 43, "D": 44, "E": 45, "F": 46, "G": 47, "H": 48, "J": 49, "K": 50, "L": 51, "M": 52, "N": 53, "P": 54, "Q": 55, "R": 56, "S": 57, "T": 58, "U": 59, "V": 60, "W": 61, "X": 62, "Y": 63, "Z": 64} chars = ["京", "沪", "津", "渝", "冀", "晋", "蒙", "辽", "吉", "黑", "苏", "浙", "皖", "闽", "赣", "鲁", "豫", "鄂", "湘", "粤", "桂", "琼", "川", "贵", "云", "藏", "陕", "甘", "青", "宁", "新", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "A", "B", "C", "D", "E", "F", "G", "H", "J", "K", "L", "M", "N", "P", "Q", "R", "S", "T", "U", "V", "W", "X", "Y", "Z"] def get_one_image(test): """ 随机获取单张车牌图像 """ n = len(test) rand_num =np.random.randint(0,n) img_dir = test[rand_num] image_show = Image.open(img_dir) plt.imshow(image_show) # 显示车牌图片 image = cv.imread(img_dir) image = image.reshape(72, 272, 3) image = np.multiply(image, 1 / 255.0) return image batch_size = 1 x = tf.compat.v1.placeholder(tf.float32, [batch_size, 72, 272, 3]) keep_prob = tf.compat.v1.placeholder(tf.float32) test_dir = 'data\\plate\\' test_image = [] for file in os.listdir(test_dir): test_image.append(test_dir + file) test_image = list(test_image) image_array = get_one_image(test_image) logit1, logit2, logit3, logit4, logit5, logit6, logit7 = model.cnn_inference(x, keep_prob) model_path = 'saved_model\\1005' saver = tf.compat.v1.train.Saver() with tf.compat.v1.Session() as sess: print ("Reading checkpoint...") ckpt = tf.train.get_checkpoint_state(model_path) if ckpt and ckpt.model_checkpoint_path: global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1] saver.restore(sess, ckpt.model_checkpoint_path) print('Loading success, global_step is %s' % global_step) else: print('No checkpoint file found') pre1, pre2, pre3, pre4, pre5, pre6, pre7 = sess.run( [logit1, logit2, logit3, logit4, logit5, logit6, logit7], feed_dict={x:image_array, keep_prob:1.0}) prediction = np.reshape(np.array([pre1, pre2, pre3, pre4, pre5, pre6, pre7]), [-1, 65]) max_index = np.argmax(prediction, axis=1) print(max_index) line = '' result = np.array([]) for i in range(prediction.shape[0]): if i == 0: result = np.argmax(prediction[i][0:31]) if i == 1: result = np.argmax(prediction[i][41:65]) + 41 if i > 1: result = np.argmax(prediction[i][31:65]) + 31 line += chars[result]+" " print ('predicted: ' + line) plt.show()
随机测试20张车牌,18张预测正确,2张预测错误,从最后两幅预测错误的图片可以看出,模型对相似字符以及遮挡字符识别成功率仍有待提高。测试结果部分展示如下:
八、总结
本次构建的CNN模型较为简单,只有6卷积层+3池化层+1全连接层,可以通过增加模型深度以及每层之间的神经元数量来优化模型,提高识别的准确率。此次训练数据集来源于自动生成的车牌,由于真实的车牌图像与生成的车牌图像在噪声干扰上有所区分,所以识别率上会有所出入。如果使用真实的车牌数据集,需要对车牌进行滤波、均衡化、腐蚀、矢量量化等预处理方法。
以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
稳了!魔兽国服回归的3条重磅消息!官宣时间再确认!
昨天有一位朋友在大神群里分享,自己亚服账号被封号之后居然弹出了国服的封号信息对话框。
这里面让他访问的是一个国服的战网网址,com.cn和后面的zh都非常明白地表明这就是国服战网。
而他在复制这个网址并且进行登录之后,确实是网易的网址,也就是我们熟悉的停服之后国服发布的暴雪游戏产品运营到期开放退款的说明。这是一件比较奇怪的事情,因为以前都没有出现这样的情况,现在突然提示跳转到国服战网的网址,是不是说明了简体中文客户端已经开始进行更新了呢?
更新日志
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]