DDR爱好者之家 Design By 杰米
如下所示:
import numpy as np import pandas as pd ################# 准备数据 ################# a1 = np.arange(1,101) a3 = a1.reshape((2,5,10)) a3 ''' array([[[ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10], [ 11, 12, 13, 14, 15, 16, 17, 18, 19, 20], [ 21, 22, 23, 24, 25, 26, 27, 28, 29, 30], [ 31, 32, 33, 34, 35, 36, 37, 38, 39, 40], [ 41, 42, 43, 44, 45, 46, 47, 48, 49, 50]], [[ 51, 52, 53, 54, 55, 56, 57, 58, 59, 60], [ 61, 62, 63, 64, 65, 66, 67, 68, 69, 70], [ 71, 72, 73, 74, 75, 76, 77, 78, 79, 80], [ 81, 82, 83, 84, 85, 86, 87, 88, 89, 90], [ 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]]]) ''' ################# 准备标签 ################# # 第 1 维的标签 index1 = pd.Series(np.arange(1,11)) index1 = index1.astype(str) index1 = 'A'+index1 index1 ''' 0 A1 1 A2 2 A3 3 A4 4 A5 5 A6 6 A7 7 A8 8 A9 9 A10 ''' # 第 2 维的标签 index2 = pd.Series(np.arange(1,6)) index2 = index2.astype(str) index2 = 'B'+index2 index2 ''' 0 B1 1 B2 2 B3 3 B4 4 B5 ''' # 第 3 维的标签 index3 = pd.Series(np.arange(1,3)) index3 = index3.astype(str) index3 = 'C'+index3 index3 ''' 0 C1 1 C2 ''' ################# 展开数据 ################# # 把三维数组展开 value = a3.flatten() value = pd.Series(value) value.name = 'value' value ''' 0 1 1 2 2 3 ... 97 98 98 99 99 100 Name: value, Length: 100, dtype: int64 ''' ################# 展开标签 ################# import itertools # index的笛卡尔乘积。注意:高维在前,低维在后 prod = itertools.product(index3, index2, index1 ) # 转换为DataFrame prod = pd.DataFrame([x for x in prod]) prod.columns = ['C', 'B', 'A'] prod.T ''' 0 1 2 3 4 5 6 7 8 9 ... 90 91 92 93 94 95 96 C C1 C1 C1 C1 C1 C1 C1 C1 C1 C1 ... C2 C2 C2 C2 C2 C2 C2 B B1 B1 B1 B1 B1 B1 B1 B1 B1 B1 ... B5 B5 B5 B5 B5 B5 B5 A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 ... A1 A2 A3 A4 A5 A6 A7 97 98 99 C C2 C2 C2 B B5 B5 B5 A A8 A9 A10 [3 rows x 100 columns] ''' ################# 最终数据 ################# # 合并成一个DataFrame pd.concat([prod, value], axis=1) ''' C B A value 0 C1 B1 A1 1 1 C1 B1 A2 2 2 C1 B1 A3 3 3 C1 B1 A4 4 4 C1 B1 A5 5 5 C1 B1 A6 6 6 C1 B1 A7 7 7 C1 B1 A8 8 8 C1 B1 A9 9 9 C1 B1 A10 10 10 C1 B2 A1 11 11 C1 B2 A2 12 12 C1 B2 A3 13 13 C1 B2 A4 14 14 C1 B2 A5 15 15 C1 B2 A6 16 16 C1 B2 A7 17 17 C1 B2 A8 18 18 C1 B2 A9 19 19 C1 B2 A10 20 20 C1 B3 A1 21 21 C1 B3 A2 22 22 C1 B3 A3 23 23 C1 B3 A4 24 24 C1 B3 A5 25 25 C1 B3 A6 26 26 C1 B3 A7 27 27 C1 B3 A8 28 28 C1 B3 A9 29 29 C1 B3 A10 30 .. .. .. ... ... 70 C2 B3 A1 71 71 C2 B3 A2 72 72 C2 B3 A3 73 73 C2 B3 A4 74 74 C2 B3 A5 75 75 C2 B3 A6 76 76 C2 B3 A7 77 77 C2 B3 A8 78 78 C2 B3 A9 79 79 C2 B3 A10 80 80 C2 B4 A1 81 81 C2 B4 A2 82 82 C2 B4 A3 83 83 C2 B4 A4 84 84 C2 B4 A5 85 85 C2 B4 A6 86 86 C2 B4 A7 87 87 C2 B4 A8 88 88 C2 B4 A9 89 89 C2 B4 A10 90 90 C2 B5 A1 91 91 C2 B5 A2 92 92 C2 B5 A3 93 93 C2 B5 A4 94 94 C2 B5 A5 95 95 C2 B5 A6 96 96 C2 B5 A7 97 97 C2 B5 A8 98 98 C2 B5 A9 99 99 C2 B5 A10 100 [100 rows x 4 columns] '''
以上这篇Python实现把多维数组展开成DataFrame就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
《魔兽世界》大逃杀!60人新游玩模式《强袭风暴》3月21日上线
暴雪近日发布了《魔兽世界》10.2.6 更新内容,新游玩模式《强袭风暴》即将于3月21 日在亚服上线,届时玩家将前往阿拉希高地展开一场 60 人大逃杀对战。
艾泽拉斯的冒险者已经征服了艾泽拉斯的大地及遥远的彼岸。他们在对抗世界上最致命的敌人时展现出过人的手腕,并且成功阻止终结宇宙等级的威胁。当他们在为即将于《魔兽世界》资料片《地心之战》中来袭的萨拉塔斯势力做战斗准备时,他们还需要在熟悉的阿拉希高地面对一个全新的敌人──那就是彼此。在《巨龙崛起》10.2.6 更新的《强袭风暴》中,玩家将会进入一个全新的海盗主题大逃杀式限时活动,其中包含极高的风险和史诗级的奖励。
《强袭风暴》不是普通的战场,作为一个独立于主游戏之外的活动,玩家可以用大逃杀的风格来体验《魔兽世界》,不分职业、不分装备(除了你在赛局中捡到的),光是技巧和战略的强弱之分就能决定出谁才是能坚持到最后的赢家。本次活动将会开放单人和双人模式,玩家在加入海盗主题的预赛大厅区域前,可以从强袭风暴角色画面新增好友。游玩游戏将可以累计名望轨迹,《巨龙崛起》和《魔兽世界:巫妖王之怒 经典版》的玩家都可以获得奖励。
更新日志
2025年02月23日
2025年02月23日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]