DDR爱好者之家 Design By 杰米

这篇文章主要介绍了Python scrapy增量爬取实例及实现过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

开始接触爬虫的时候还是初学Python的那会,用的还是request、bs4、pandas,再后面接触scrapy做个一两个爬虫,觉得还是框架好,可惜都没有记录都忘记了,现在做推荐系统需要爬取一定的文章,所以又把scrapy捡起来。趁着这次机会做一个记录。

目录如下:

  • 环境
  • 本地窗口调试命令
  • 工程目录
  • xpath选择器
  • 一个简单的增量爬虫示例
  • 配置介绍

环境

"htmlcode">

# 测试请求某网站
scrapy shell URL
# 设置请求头
scrapy shell -s USER_AGENT="Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:61.0) Gecko/20100101 Firefox/61.0" URL

# 指定爬虫内容输出文件格式(json、csv等
scrapy crawl SPIDER_NAME -o FILE_NAME.csv

# 创建爬虫工程
scrapy startproject articles # 在当前目录创建一个scrapy工程

新工程结构介绍

# spiders文件下存放所有爬虫,item.py格式化数据输出
# middlewares.py 设置请求细节(请求头之类的),pipelines.py为数据输出的管道,每一个封装好的item都会经过这里
# settings.py 对工程进行全局设置(存放配置
├── articles
│  ├── articles
│  │  ├── __init__.py
│  │  ├── items.py
│  │  ├── middlewares.py
│  │  ├── pipelines.py
│  │  ├── settings.py
│  │  └── spiders
│  │    ├── healthy_living.py
│  │    ├── __init__.py
│  │    └── people_health.py
│  └── scrapy.cfg
├── README.en.md
└── README.md

页面解析神器——Xpath选择器

scrapy自带xpath选择器,很方便,简单介绍一些常用的

# 全站爬取神器--LinkExtractor,可以自动获取该标签下的所有url跟text(因为网站结构大都一个套路
from scrapy.linkextractors import LinkExtractor
le = LinkExtractor(restrict_xpaths="//ul[@class='nav2_UL_1 clearFix']")# 返回一个迭代器,通过循环(for i in le),可获取url(i.url) (i.text)

# 获取属性class为所有aa的div标签内容中的内容
response.xpath("//div[@class='aa']/text()").extract()    # '//'代表获取所有,'/'代表获取第一个,类似的可以找属性为ul的其它标签

# 获取内容包含“下一页”的所有a标签中包含的链接(提取下一页链接神器
response.xpath("//a[contains(text(),'下一页')]/@href").extract()

一个简单的增量爬取示例

这里增量爬取的思想很简单:目标网站的数据都是按照时间排列的,所以在对某个连接进行request之前,先查询数据库中有没有这条数据,如果有,就停止爬虫,如果没有发起请求

class HealthyLiving(scrapy.Spider):
  # 一定要一个全局唯一的爬虫名称,命令行启动的时候需要指定该名称
  name = "healthy_living"
  # 指定爬虫入口,scrapy支持多入口,所以一定是lis形式
  start_urls = ['http://www.jkb.com.cn/healthyLiving/']

  '''
  抓取大类标签入口
  '''
  def parse(self, response):
    le = LinkExtractor(restrict_xpaths="//ul[@class='nav2_UL_1 clearFix']")
    for link in le.extract_links(response)[1:-1]:
      tag = link.text
      # 将这一级提取到的信息,通过请求头传递给下一级(这里是为了给数据打标签
      meta = {"tag": tag}
      # 依次解析每一个链接,并传递到下一级进行继续爬取
      yield scrapy.Request(link.url, callback=self.parse_articles, meta=meta)

  '''
  抓取页面内的文章链接及下一页链接
  '''
  def parse_articles(self, response):
    # 接收上一级传递的信息
    meta = response.meta
    article_links = response.xpath("//div[@class='txt']/h4/a/@href").extract()
    for link in article_links:
      res = self.collection.find_one({"article_url": link}, {"article_url": 1})
      full_meta = dict(meta)
      # 将文章链接传入下一级
      full_meta.update({"article_url": link})
      if res is None:
        yield scrapy.Request(link, callback=self.parse_article, meta=full_meta)
      else:
        return
    next_page = response.xpath("//div[@class='page']//a[contains(text(),'»')]/@href").extract()[0]
    if next_page:
      yield scrapy.Request(next_page, callback=self.parse_articles, meta=meta)

# 最后解析页面,并输出
  def parse_article(self, response):
   # 从item.py中导入数据封装格式
    article_item = ArticlesItem()
    meta = response.meta
    # 利用xpath提取页面信息并封装成item
    try:
      article_item["tag"] = ""
      # ... 省略
    finally:
      yield article_item

工程配置介绍

设置请求头、配置数据库

# 设置请求头,在middlewares.py中设定,在settings.py中启用
class RandomUA(object):
  user_agents = [
      "Mozilla/5.0 (Windows NT 6.1; WOW64) AppleWebKit"
      "/537.36 (KHTML, like Gecko) Chrome/39.0.2171.71 Safari/537.36",
      "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.11 (KHTML, like Gecko) Chrome/23.0.1271.64 Safari/537.11",
      "Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US) AppleWebKit"
      "/534.16 (KHTML, like Gecko) Chrome/10.0.648.133 Safari/534.16"
    ]

  def process_request(self, request, spider):
    request.headers["User-Agent"] = random.choice(self.user_agents)


# 设置数据入库处理,在pipeline.py进行配置,在settings.py进行启用
class MongoPipeline(object):
  def __init__(self, mongo_uri, mongo_db):
    self.mongo_uri = mongo_uri
    self.mongo_db = mongo_db

  @classmethod
  def from_crawler(cls, crawler):
    return cls(
      mongo_uri=crawler.settings.get('MONGO_URI'),
      mongo_db=crawler.settings.get('MONGO_DB')
    )

  def open_spider(self, spider):
    print("开始爬取", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    self.client = pymongo.MongoClient(self.mongo_uri)
    self.db = self.client[self.mongo_db]

  def process_item(self, item, spider):
    data = self.db[item.collection].find_one({"title": item["title"], "date": item["date"]})

    if data is None:
      self.db[item.collection].insert(dict(item))
    # else:
    #   self.close_spider(self, spider)
    return item

  def close_spider(self, spider):
    print("爬取结束", datetime.datetime.now().strftime('%Y-%m-%d %H:%M:%S'))
    self.client.close()
# 在settings.py启动:请求头的修改,数据库的配置
DOWNLOADER_MIDDLEWARES = {
  # 'articles.middlewares.ArticlesDownloaderMiddleware': 543,
  'articles.middlewares.RandomUA': 543,# 543代表优先级,数字越低优先级越高
}

ITEM_PIPELINES = {
  'articles.pipelines.MongoPipeline': 300,
}

# 一些其它配置
ROBOTSTXT_OBEY = True # 是否遵守网站的robot协议
FEED_EXPORT_ENCODING = 'utf-8' # 指定数据输出的编码格式
## 数据库配置
MONGO_URI = ''
MONGO_DB = ''
MONGO_PORT = 27017
MONGO_COLLECTION = ''

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米