DDR爱好者之家 Design By 杰米

对于简单的网络

例如全连接层Linear

可以使用以下方法打印linear层:

fc = nn.Linear(3, 5)
params = list(fc.named_parameters())
print(params.__len__())
print(params[0])
print(params[1])

输出如下:

pytorch 实现打印模型的参数值

由于Linear默认是偏置bias的,所有参数列表的长度是2。第一个存的是全连接矩阵,第二个存的是偏置。

对于稍微复杂的网络

例如MLP

mlp = nn.Sequential(
      nn.Dropout(p=0.3),
      nn.Linear(1024, 256),
      nn.Linear(256, 64),
      nn.Linear(64, 16),
      nn.Linear(16, 1)
    )
params = list(mlp.named_parameters())
print(params.__len__())

print(params[0])
print(params[1])

print(params[2])
print(params[3])

输出:

pytorch 实现打印模型的参数值

pytorch 实现打印模型的参数值

可以发现,堆叠起来的网络,参数是依次放置的。先是全连接的权重,然后偏置。然后是下一层网络的权重+偏置。依次进行下去。

这里有4层fc,4*2=8.所以一共有8个参数矩阵。

以上这篇pytorch 实现打印模型的参数值就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米