DDR爱好者之家 Design By 杰米

一. 指定一个gpu训练的两种方法:

1.代码中指定

import torch
torch.cuda.set_device(id)

2.终端中指定

CUDA_VISIBLE_DEVICES=1 python 你的程序

其中id就是你的gpu编号

二. 多gpu并行训练:

torch.nn.DataParallel(module, device_ids=None, output_device=None, dim=0)

该函数实现了在module级别上的数据并行使用,注意batch size要大于GPU的数量。

参数 :

module:需要多GPU训练的网络模型

device_ids: GPU的编号(默认全部GPU,或[0,1] ,[0,1,2])

output_device:(默认是device_ids[0])

dim:tensors被分散的维度,默认是0

在保存模型时要注意要加上"module",例如:

network.module.state_dict()

以上这篇pytorch 指定gpu训练与多gpu并行训练示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米