DDR爱好者之家 Design By 杰米

我就废话不多说了,直接上代码吧!

import torch
import time
x = torch.Tensor([[1, 2, 3], [5, 5, 5], [7, 8, 9],[5,5,5],[1,2,3,],[1,2,4]])
'''
使用pytorch实现对于任意shape的torch.tensor,如果其中的element不等于5则为0,等于5则保留原数值
实现该功能的两种方式,并比较两种实现方式的速度
'''

# x[x!=5]=1
def t2(x):
  x[x!=5]=0
  return x
def t(x):
  zeros=torch.zeros(x.shape)
  # ones=torch.ones(x.shape)
  x=torch.where(x!=5,zeros,x)
  return x

t2_start=time.time()
t2=t2(x)
t2_end=time.time()

t_start=time.time()
t=t(x)
t_end=time.time()
print(t2,t)
print(torch.sum(t-t2))

print('using x[x!=5]=0 time:',t2_end-t2_start)
print('using torch.where time:',t_end-t_start)
'''
tensor([[0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [0., 0., 0.]]) tensor([[0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [5., 5., 5.],
    [0., 0., 0.],
    [0., 0., 0.]])
tensor(0.)
using x[x!=5]=0 time: 0.0010008811950683594
using torch.where time: 0.0

看来大神说的没错,果然是使用torch.where速度更快
 a[a!=5]=0 这种写法,速度比 torch.where 慢了超级多
'''

以上这篇基于torch.where和布尔索引的速度比较就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。

DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米