DDR爱好者之家 Design By 杰米
第一步、导入需要的包
import os import scipy.io as sio import numpy as np import torch import torch.nn as nn import torch.backends.cudnn as cudnn import torch.optim as optim from torch.utils.data import Dataset, DataLoader from torchvision import transforms, utils from torch.autograd import Variable
batchSize = 128 # batchsize的大小 niter = 10 # epoch的最大值
第二步、构建神经网络
设神经网络为如上图所示,输入层4个神经元,两层隐含层各4个神经元,输出层一个神经。每一层网络所做的都是线性变换,即y=W×X+b;代码实现如下:
class Neuralnetwork(nn.Module): def __init__(self, in_dim, n_hidden_1, n_hidden_2, out_dim): super(Neuralnetwork, self).__init__() self.layer1 = nn.Linear(in_dim, n_hidden_1) self.layer2 = nn.Linear(n_hidden_1, n_hidden_2) self.layer3 = nn.Linear(n_hidden_2, out_dim) def forward(self, x): x = x.view(x.size(0), -1) x = self.layer1(x) x = self.layer2(x) x = self.layer3(x) return x model = Neuralnetwork(1*3, 4, 4, 1) print(model) # net architecture
Neuralnetwork( (layer1): Linear(in_features=3, out_features=4, bias=True) (layer2): Linear(in_features=4, out_features=4, bias=True) (layer3): Linear(in_features=4, out_features=1, bias=True) )
"" src="/UploadFiles/2021-04-08/20200107140754.jpg">
class SBPEstimateDataset(Dataset): def __init__(self, ext='demo'): data = sio.loadmat(ext+'_SBPFea.mat') self.fea = data['fea'] self.sbp = data['sbp'] def __len__(self): return len(self.sbp) def __getitem__(self, idx): fea = self.fea[idx] sbp = self.sbp[idx] """Convert ndarrays to Tensors.""" return {'fea': torch.from_numpy(fea).float(), 'sbp': torch.from_numpy(sbp).float() } train_dataset = SBPEstimateDataset(ext='demo') train_loader = DataLoader(train_dataset, batch_size=batchSize, # 分批次训练 shuffle=True, num_workers=int(8))
整个数据样本为1000,以batchSize = 128划分,分为8份,前7份为104个样本,第8份则为104个样本。在网络训练过程中,是一份数据一份数据进行训练的
第四步、模型训练
# 优化器,Adam optimizer = optim.Adam(list(model.parameters()), lr=0.0001, betas=(0.9, 0.999),weight_decay=0.004) scheduler = optim.lr_scheduler.ExponentialLR(optimizer, gamma=0.997) criterion = nn.MSELoss() # loss function if torch.cuda.is_available(): # 有GPU,则用GPU计算 model.cuda() criterion.cuda() for epoch in range(niter): losses = [] ERROR_Train = [] model.train() for i, data in enumerate(train_loader, 0): model.zero_grad()# 首先提取清零 real_cpu, label_cpu = data['fea'], data['sbp'] if torch.cuda.is_available():# CUDA可用情况下,将Tensor 在GPU上运行 real_cpu = real_cpu.cuda() label_cpu = label_cpu.cuda() input=real_cpu label=label_cpu inputv = Variable(input) labelv = Variable(label) output = model(inputv) err = criterion(output, labelv) err.backward() optimizer.step() losses.append(err.data[0]) error = output.data-label+ 1e-12 ERROR_Train.extend(error) MAE = np.average(np.abs(np.array(ERROR_Train))) ME = np.average(np.array(ERROR_Train)) STD = np.std(np.array(ERROR_Train)) print('[%d/%d] Loss: %.4f MAE: %.4f Mean Error: %.4f STD: %.4f' % ( epoch, niter, np.average(losses), MAE, ME, STD))
[0/10] Loss: 18384.6699 MAE: 135.3871 Mean Error: -135.3871 STD: 7.5580 [1/10] Loss: 17063.0215 MAE: 130.4145 Mean Error: -130.4145 STD: 7.8918 [2/10] Loss: 13689.1934 MAE: 116.6625 Mean Error: -116.6625 STD: 9.7946 [3/10] Loss: 8192.9053 MAE: 89.6611 Mean Error: -89.6611 STD: 12.9911 [4/10] Loss: 2979.1340 MAE: 52.5410 Mean Error: -52.5279 STD: 15.0930 [5/10] Loss: 599.7094 MAE: 22.2735 Mean Error: -19.9979 STD: 14.2069 [6/10] Loss: 207.2831 MAE: 11.2394 Mean Error: -4.8821 STD: 13.5528 [7/10] Loss: 189.8173 MAE: 9.8020 Mean Error: -1.2357 STD: 13.7095 [8/10] Loss: 188.3376 MAE: 9.6512 Mean Error: -0.6498 STD: 13.7075 [9/10] Loss: 186.8393 MAE: 9.6946 Mean Error: -1.0850 STD: 13.6332
以上这篇Pytorch 神经网络—自定义数据集上实现教程就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2024年11月25日
2024年11月25日
- 凤飞飞《我们的主题曲》飞跃制作[正版原抓WAV+CUE]
- 刘嘉亮《亮情歌2》[WAV+CUE][1G]
- 红馆40·谭咏麟《歌者恋歌浓情30年演唱会》3CD[低速原抓WAV+CUE][1.8G]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[320K/MP3][193.25MB]
- 【轻音乐】曼托凡尼乐团《精选辑》2CD.1998[FLAC+CUE整轨]
- 邝美云《心中有爱》1989年香港DMIJP版1MTO东芝首版[WAV+CUE]
- 群星《情叹-发烧女声DSD》天籁女声发烧碟[WAV+CUE]
- 刘纬武《睡眠宝宝竖琴童谣 吉卜力工作室 白噪音安抚》[FLAC/分轨][748.03MB]
- 理想混蛋《Origin Sessions》[320K/MP3][37.47MB]
- 公馆青少年《我其实一点都不酷》[320K/MP3][78.78MB]
- 群星《情叹-发烧男声DSD》最值得珍藏的完美男声[WAV+CUE]
- 群星《国韵飘香·贵妃醉酒HQCD黑胶王》2CD[WAV]
- 卫兰《DAUGHTER》【低速原抓WAV+CUE】
- 公馆青少年《我其实一点都不酷》[FLAC/分轨][398.22MB]
- ZWEI《迟暮的花 (Explicit)》[320K/MP3][57.16MB]