DDR爱好者之家 Design By 杰米
我就废话不多说了,直接上代码吧!
import torch
import torch.nn as nn
from torch.autograd import Variable
import numpy as np
import matplotlib.pyplot as plt
torch.manual_seed(1)
np.random.seed(1)
BATCH_SIZE = 64
LR_G = 0.0001
LR_D = 0.0001
N_IDEAS = 5
ART_COMPONENTS = 15
PAINT_POINTS = np.vstack([np.linspace(-1,1,ART_COMPONENTS) for _ in range(BATCH_SIZE)])
def artist_works():
a = np.random.uniform(1,2,size=BATCH_SIZE)[:,np.newaxis]
paintings = a*np.power(PAINT_POINTS,2) + (a-1)
paintings = torch.from_numpy(paintings).float()
return Variable(paintings)
G = nn.Sequential(
nn.Linear(N_IDEAS,128),
nn.ReLU(),
nn.Linear(128,ART_COMPONENTS),
)
D = nn.Sequential(
nn.Linear(ART_COMPONENTS,128),
nn.ReLU(),
nn.Linear(128,1),
nn.Sigmoid(),
)
opt_D = torch.optim.Adam(D.parameters(),lr=LR_D)
opt_G = torch.optim.Adam(G.parameters(),lr=LR_G)
plt.ion()
for step in range(10000):
artist_paintings = artist_works()
G_ideas = Variable(torch.randn(BATCH_SIZE,N_IDEAS))
G_paintings = G(G_ideas)
prob_artist0 = D(artist_paintings)
prob_artist1 = D(G_paintings)
D_loss = - torch.mean(torch.log(prob_artist0) + torch.log(1-prob_artist1))
G_loss = torch.mean(torch.log(1 - prob_artist1))
opt_D.zero_grad()
D_loss.backward(retain_variables=True)
opt_D.step()
opt_G.zero_grad()
G_loss.backward()
opt_G.step()
if step % 50 == 0:
plt.cla()
plt.plot(PAINT_POINTS[0],G_paintings.data.numpy()[0],c='#4ad631',lw=3,label='Generated painting',)
plt.plot(PAINT_POINTS[0],2 * np.power(PAINT_POINTS[0], 2) + 1,c='#74BCFF',lw=3,label='upper bound',)
plt.plot(PAINT_POINTS[0],1 * np.power(PAINT_POINTS[0], 2) + 0,c='#FF9359',lw=3,label='lower bound',)
plt.text(-.5,2.3,'D accuracy=%.2f (0.5 for D to converge)' % prob_artist0.data.numpy().mean(), fontdict={'size':15})
plt.text(-.5, 2, 'D score= %.2f (-1.38 for G to converge)' % -D_loss.data.numpy(), fontdict={'size': 15})
plt.ylim((0,3))
plt.legend(loc='upper right', fontsize=12)
plt.draw()
plt.pause(0.01)
plt.ioff()
plt.show()
以上这篇pytorch GAN生成对抗网络实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
RTX 5090要首发 性能要翻倍!三星展示GDDR7显存
三星在GTC上展示了专为下一代游戏GPU设计的GDDR7内存。
首次推出的GDDR7内存模块密度为16GB,每个模块容量为2GB。其速度预设为32 Gbps(PAM3),但也可以降至28 Gbps,以提高产量和初始阶段的整体性能和成本效益。
据三星表示,GDDR7内存的能效将提高20%,同时工作电压仅为1.1V,低于标准的1.2V。通过采用更新的封装材料和优化的电路设计,使得在高速运行时的发热量降低,GDDR7的热阻比GDDR6降低了70%。
更新日志
2025年10月25日
2025年10月25日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]
