DDR爱好者之家 Design By 杰米
一:需重定义神经网络继续训练的方法
1.训练代码
import numpy as np
import tensorflow as tf
x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3
weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w")
biases=tf.Variable(tf.zeros([1]),name="b")
y=weight*x_data+biases
loss=tf.reduce_mean(tf.square(y-y_data)) #loss
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
sess.run(train)
saver.save(sess,"./save_mode",global_step=step) #保存
print("当前进行:",step)
第一次训练截图:
2.恢复上一次的训练
import numpy as np
import tensorflow as tf
sess=tf.Session()
saver=tf.train.import_meta_graph(r'save_mode-9.meta')
saver.restore(sess,tf.train.latest_checkpoint(r'./'))
print(sess.run("w:0"),sess.run("b:0"))
graph=tf.get_default_graph()
weight=graph.get_tensor_by_name("w:0")
biases=graph.get_tensor_by_name("b:0")
x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3
y=weight*x_data+biases
loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
sess.run(train)
saver.save(sess,r"./save_new_mode",global_step=step)
print("当前进行:",step," ",sess.run(weight),sess.run(biases))
使用上次保存下的数据进行继续训练和保存:
#最后要提一下的是:
checkpoint文件
meta保存了TensorFlow计算图的结构信息
datat保存每个变量的取值
index保存了 表
加载restore时的文件路径名是以checkpoint文件中的“model_checkpoint_path”值决定的
这个方法需要重新定义神经网络
二:不需要重新定义神经网络的方法:
在上面训练的代码中加入:tf.add_to_collection("name",参数)
import numpy as np
import tensorflow as tf
x_data=np.random.rand(100).astype(np.float32)
y_data=x_data*0.1+0.3
weight=tf.Variable(tf.random_uniform([1],-1.0,1.0),name="w")
biases=tf.Variable(tf.zeros([1]),name="b")
y=weight*x_data+biases
loss=tf.reduce_mean(tf.square(y-y_data))
optimizer=tf.train.GradientDescentOptimizer(0.5)
train=optimizer.minimize(loss)
tf.add_to_collection("new_way",train)
init=tf.global_variables_initializer()
sess=tf.Session()
sess.run(init)
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
sess.run(train)
saver.save(sess,"./save_mode",global_step=step)
print("当前进行:",step)
在下面的载入代码中加入:tf.get_collection("name"),就可以直接使用了
import numpy as np
import tensorflow as tf
sess=tf.Session()
saver=tf.train.import_meta_graph(r'save_mode-9.meta')
saver.restore(sess,tf.train.latest_checkpoint(r'./'))
print(sess.run("w:0"),sess.run("b:0"))
graph=tf.get_default_graph()
weight=graph.get_tensor_by_name("w:0")
biases=graph.get_tensor_by_name("b:0")
y=tf.get_collection("new_way")[0]
saver=tf.train.Saver(max_to_keep=0)
for step in range(10):
sess.run(y)
saver.save(sess,r"./save_new_mode",global_step=step)
print("当前进行:",step," ",sess.run(weight),sess.run(biases))
总的来说,下面这种方法好像是要便利一些
以上这篇tensorflow如何继续训练之前保存的模型实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持。
DDR爱好者之家 Design By 杰米
广告合作:本站广告合作请联系QQ:858582 申请时备注:广告合作(否则不回)
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
免责声明:本站资源来自互联网收集,仅供用于学习和交流,请遵循相关法律法规,本站一切资源不代表本站立场,如有侵权、后门、不妥请联系本站删除!
DDR爱好者之家 Design By 杰米
暂无评论...
更新日志
2025年11月03日
2025年11月03日
- 小骆驼-《草原狼2(蓝光CD)》[原抓WAV+CUE]
- 群星《欢迎来到我身边 电影原声专辑》[320K/MP3][105.02MB]
- 群星《欢迎来到我身边 电影原声专辑》[FLAC/分轨][480.9MB]
- 雷婷《梦里蓝天HQⅡ》 2023头版限量编号低速原抓[WAV+CUE][463M]
- 群星《2024好听新歌42》AI调整音效【WAV分轨】
- 王思雨-《思念陪着鸿雁飞》WAV
- 王思雨《喜马拉雅HQ》头版限量编号[WAV+CUE]
- 李健《无时无刻》[WAV+CUE][590M]
- 陈奕迅《酝酿》[WAV分轨][502M]
- 卓依婷《化蝶》2CD[WAV+CUE][1.1G]
- 群星《吉他王(黑胶CD)》[WAV+CUE]
- 齐秦《穿乐(穿越)》[WAV+CUE]
- 发烧珍品《数位CD音响测试-动向效果(九)》【WAV+CUE】
- 邝美云《邝美云精装歌集》[DSF][1.6G]
- 吕方《爱一回伤一回》[WAV+CUE][454M]

